
Introduction to OAuth 2.0
By Bertrand Carlier

© 2023 IDPro, Bertrand Carlier

To comment on this article, please visit our GitHub repository and submit an issue.

Table of Contents

ABSTRACT ... 1

ABOUT OAUTH2 ... 2

TERMINOLOGY... 3

WHERE TO START... 4

GET A TOKEN:... 5
USE THE TOKEN .. 5
VALIDATE THE TOKEN.. 5
BEYOND THE BASICS ... 6
SCOPES .. 6
GET A TOKEN (ALSO) .. 6
TOKENS ... 7
DISCOVERY ... 7

BEYOND OAUTH2 .. 7

ADDITIONAL READING ... 8

AUTHOR .. 8

Abstract
This article introduces a widely deployed protocol named OAuth 2.0 (Open Authorization

2.0, commonly referred to as OAuth2). It is used extensively by large social media service

providers and many other web-based Internet services today.

https://github.com/IDPros/bok
https://docs.github.com/en/github/managing-your-work-on-github/opening-an-issue-from-code

About OAuth2
In a nutshell, this standard protocol aims to allow access from a client application (a

website, a mobile application, an Internet-connected device, etc.) to a protected resource

(e.g., an API), possibly on behalf of a resource owner (e.g., the end-user). It can be

associated with several transport protocols but has been very popular to secure REST web

services.

This article will focus on the current published standards; work is underway in the OAuth

working group in the IETF to update some of this material. For more information on how

OAuth came about and its relationship with other authentication protocols, see Pamela

Dingle’s IDPro Body of Knowledge article, “Introduction to Identity - Part 2: Access

Management.”i

OAuth2 can be considered a three-step protocol:

1. Get an access token

2. Use the access token

3. Validate the access token

Figure 1: High-level diagram of OAuth2 flows

When looking into the OAuth2 specification space, you are quickly surrounded with many

documents, making it difficult to determine the easiest path to follow.

Let’s see where to start the journey and where to head.

https://datatracker.ietf.org/wg/oauth/about/
https://datatracker.ietf.org/wg/oauth/about/

Terminology

Term Definition

Client A client application consuming an API

Protected Resource An API in the OAuth2 terminology

Resource Owner An end-user using the client application

and granting it access to the protected

resource

Authorization Server (AS) The OAuth2 server is able to authorize a

client, issue tokens, and potentially validate

tokens

Scope A string designating a (part) of a protected

resource that a client is authorized to

access

Bearer token A token whose possession is sufficient to

enable access to a protected resource

Sender constrained token A token whose possession is not sufficient

to enable access to a protected resource

(additional proof of identity by the client

application is required)

Access token The OAuth2 token that allows a client to get

access to a protected resource

Refresh token The OAuth2 token that allows a client to

renew an access token when it is expired

without the user’s presence

Where to start
OAuth2 is defined through a series of IETF RFC documents that each describe a specific

aspect, use case, or profile of use of the protocol.

Figure 2: An artistic rendering of OAuth and related standards, courtesy of Aaron Parecki

Everything starts with two RFC documents:

● RFC 6749 - The OAuth 2.0 Authorization Framework defines four ways for a client

application to obtain a token from an authorization server (two of those are now

deprecated). Those are called flows or authorization grants.ii

● RFC 6750 - The OAuth 2.0 Authorization Framework: Bearer Token Usage defines

the way for a client application to use a token in a subsequent request to a

protected resource.iii

● Later on, different documents would help with the validation step:

○ RFC 7662 - OAuth 2.0 Token Introspection defining token introspection

against the authorization server, which can be used to verify token validity

and extract data from the token.iv

○ or RFC 9068 - JSON Web Token (JWT) Profile for OAuth 2.0 Access Tokens

defining a JWT profile for the access token.v

Let’s use this breakdown to see what OAuth2 offers.

https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc7662
https://www.rfc-editor.org/info/rfc9068

Get a Token:
This step can be seen as a two-step process: first, the client must be authorized for an

access token, then the client will perform a token request.

● As mentioned above, of the four initial ways to obtain a token, two are deprecated

following OAuth2.1 (currently draft):

○ Resource Owner Password Credentials, which encouraged an anti-pattern of

sharing end-user credentials with the client application

○ Implicit flow, which made extensive use of the browser’s front channel and

therefore introduced security issues

● The two recommended flows remaining are the following:

○ Authorization code flow is the recommended way to obtain a token when a

resource owner is present and needs to authenticate first and then consent

to delegate access for the client application to the protected resource. This

flow uses redirections within a user-agent, typically the user’s browser, as

well as a back-channel request to eventually obtain the OAuth2 Access

Token.

There is a first step to authorize the client to get an access token and then a

second step where the client actually gets the token.

An additional protection to the original Authorization Code flow is now

recommended in order to tighten the security of OAuth2 authorization and

deliver the Access Token to the legitimate client that initiated the request.

The name of this additional protection is PKCE (for Proof Key Code Exchange,

pronounced “pixie,” as defined in RFC 7636) and is considered a good

approach to handle public clients.vi

○ Client credentials aim to authenticate the client application only to deliver

the access token (in that case, the AT is not linked to an end user’s identity

but only to the client application identity). This flow is suited for application-

to-application access.

Use the Token
This step aims to use the access token while calling the protected resource.

RFC 6750 describes how an access token should be conveyed to a protected resource. In a

very brief summary, and in order of preference, the token should be passed as:

- An HTTP header as a bearer token (Authorization: Bearer <access token>)

- A POST parameter

- A GET parameter (aka Query String parameter)

Validate the Token
Finally, the protected resource receiving a token needs to check the token’s validity. This

token validation was, for a long time, left to implementations to define how to proceed:

https://datatracker.ietf.org/doc/draft-ietf-oauth-v2-1/
https://www.rfc-editor.org/info/rfc7636

● The token format is not specified and can be anything from a randomly generated

opaque string acting as a reference token to a quite frequently witnessed JWT

signed value token (RFC 7519), but it can be anything that would fit the designers of

any given implementation.vii

● If the token is opaque to the client as per the RFC, no specific instructions are

defined regarding how the protected resource should validate it. It relies on an out-

of-band and beyond-the-scope-of-the-specification process to agree between

protected resource and authorization server on how to validate a token: digital

signature validation and possibly decryption of a self-contained token (see RFC 9068

for standardization of this approach using JWT as the token format) or introspection

of a reference token against an Authorization Server (AS) endpoint (see RFC 7662 for

standardization of this approach).

It is generally recommended to rely on one of those two documents to help with

interoperability between the protected resource and the authorization server

Beyond the Basics
This section of the article now gives additional details on more aspects of the OAuth2

protocol and additional specification documents.

Scopes
OAuth2 does not allow a client application to access any resource without restriction once

it has an access token. An authorization request and, ultimately, the issued token holds a

scope (which is a list of space-delimited, case-sensitive strings) that will allow the protected

resource to determine if the authorization was indeed given to access it.

Get a Token (Also)
A few additional ways to obtain an access token were later provided through additional

specifications:

● SAML profile and JWT profile will allow the delivery of an access token in exchange

for, respectively, a SAML token or a JWT token issued for a specific end-user or

crafted by the client application itself in order to authenticate itself.viii

● Device flow will allow Internet-connected devices to retrieve an access token even if

they can’t display a browser or are input-constrained.ix This flow will rely on the end-

user using another device (e.g., a browser on a smartphone) to complete part of the

sequence.

● Token exchange will enable an access token to be issued in exchange of any other

security token and will provide guidelines to correctly implement delegation or

impersonation.x

https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7522
https://www.rfc-editor.org/info/rfc7523
https://www.rfc-editor.org/info/rfc8628
https://www.rfc-editor.org/info/rfc8693

Tokens
Until now, only the access token was mentioned. It is the core token that OAuth2 provides

to client applications. This token is generally a bearer token, meaning that any entity that

gets access to it can use it to access the protected resource. This characteristic has several

security implications:

● The protected resource cannot be sure that the client application currently

requesting access is the same one that initially obtained the token

● The end user that may have had to be authenticated to allow the token to be

generated may not be present anymore

Access tokens, therefore, can have different characteristics to mitigate those implications:

● Time-limited tokens. The specification recommends that the access token has a

limited lifetime.

● Sender-constrained tokens. Recent specifications (mTLS, DPoP, etc.) allow that

access tokens can be bound to the initial client application using various

mechanisms, generally involving proof-of-possession of a cryptographic key both at

the token request and at the token usage and that the token is linked to that key

material (through a public key thumbprint for instance).xi As a consequence, a

sender-constrained token can only be used by the application that requested the

token. It is worth noting that while approaches like DPoP can protect against a

stolen token, they do not protect against a stolen client ID/secret for a

client_credential grant.

OAuth2 also defines the concept of a refresh token issued by the Authorization Server and

shared with the client app. This refresh token will allow the client app to request a fresh AT

(e.g., once it expires) and potentially a refreshed refresh token without having to involve

the end-user, for instance. This can be used to maintain a decent UX in a single-page

application (SPA) or to allow for offline access when the user is not present anymore, but

the client app needs access to the protected resource.

Discovery
In order to help clients dynamically register against an authorization server or

programmatically get information about the authorization server features and level of

support, some discovery and dynamic registration specifications are also available:

- Client dynamic registration (RFC 7591)xii

- Authorization Server Metadata (RFC 8414)xiii

Beyond OAuth2
Now that most OAuth2 specifications have been introduced, you can easily imagine how

difficult it can sometimes be to navigate through them and ensure one’s implementation is

solid and secure. OAuth2 working group members created additional documents to help:

https://www.rfc-editor.org/info/rfc8705
https://www.rfc-editor.org/info/rfc9449
https://www.rfc-editor.org/info/rfc7591
https://www.rfc-editor.org/info/rfc8414

- RFC 6819 - OAuth 2.0 Threat Model and Security Considerationsxiv

- OAuth 2.0 Security Best Current Practice (currently draft)

- OAuth 2.1 (currently draft) is a minor but important revision to the standard that

incorporates security best practices

- RFC 8252 - OAuth 2.0 for Native Apps for best practices around native application

clients on different platformsxv

- OAuth 2.0 for Browser-Based Apps (currently draft) for best practices around Single

Page Applications

OAuth2 is also a foundation upon which other protocols were developed, the most known

among these being OpenID Connect.

- OpenID Connect, as described in the specification, is a “simple identity layer on top

of the OAuth 2.0 protocol.”xvi Contrary to OAuth2, which focuses on authorization

delegation, OIDC focuses on authentication. It introduces another token (ID Token),

which is shared between the Authorization Server (or OpenID provider) and the

client (or Relying Party). This token is a JWT formatted token. It conveys information

about the authenticated identity through standard-defined claims and information

about the authentication itself (time of authentication, method used, etc.).

- User-Managed Access 2.0 is another protocol defined on top of OAuth2 (as a new

authorization grant).xvii It introduces additional tokens, but most importantly, it does

introduce a new player in the picture: the requesting party, which can be different

from the resource owner (in OAuth2, the resource owner is the requesting party).

Additional Reading
For additional information on implementing OAuth2, these resources may be of assistance:

• Richer, Justin, and Antonio Sanso. 2017. OAuth 2 in Action. Manning.

• Parecki, Aaron. 2018. OAUTH 2.0 Simplified. Lulu.com.

Author
Bertrand Carlier is a senior manager in the Cybersecurity & Digital Trust practice at

Wavestone consultancy with 20 years of experience. He has been leading major Identity &

Access Management projects, working with many client companies in a variety of

industries.

He is devoted to promoting and encouraging the use of open standards and has done so

through leading projects and talks at various international conferences.

He likes nothing more than to tackle the newest problems in the Identity and Access

Management space: API & microservices security, IAM of Things, AI for IAM and IAM for AI,

and, of course, the longstanding problem of “how to cope with both the legacy and the ever

more shiny (and accumulating) new toys?”

https://www.rfc-editor.org/info/rfc6819
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics
https://datatracker.ietf.org/doc/draft-ietf-oauth-v2-1/
https://www.rfc-editor.org/info/rfc8252
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-browser-based-apps
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html

i Dingle, P., (2020) “Introduction to Identity - Part 2: Access Management”, IDPro Body of Knowledge

1(2). doi: https://doi.org/10.55621/idpro.45
ii Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", RFC 6749, DOI 10.17487/RFC6749,

October 2012, <https://www.rfc-editor.org/info/rfc6749>.
iii Jones, M. and D. Hardt, "The OAuth 2.0 Authorization Framework: Bearer Token Usage", RFC 6750,

DOI 10.17487/RFC6750, October 2012, <https://www.rfc-editor.org/info/rfc6750>.
iv Richer, J., Ed., "OAuth 2.0 Token Introspection", RFC 7662, DOI 10.17487/RFC7662, October 2015,

<https://www.rfc-editor.org/info/rfc7662>.
v Bertocci, V., "JSON Web Token (JWT) Profile for OAuth 2.0 Access Tokens", RFC 9068, DOI

10.17487/RFC9068, October 2021, <https://www.rfc-editor.org/info/rfc9068>.
vi Sakimura, N., Ed., Bradley, J., and N. Agarwal, "Proof Key for Code Exchange by OAuth Public

Clients", RFC 7636, DOI 10.17487/RFC7636, September 2015, <https://www.rfc-

editor.org/info/rfc7636>.
vii Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token (JWT)", RFC 7519, DOI 10.17487/RFC7519,

May 2015, <https://www.rfc-editor.org/info/rfc7519>.
viii Campbell, B., Mortimore, C., and M. Jones, "Security Assertion Markup Language (SAML) 2.0 Profile

for OAuth 2.0 Client Authentication and Authorization Grants", RFC 7522, DOI 10.17487/RFC7522,

May 2015, <https://www.rfc-editor.org/info/rfc7522> and Jones, M., Campbell, B., and C. Mortimore,

"JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants", RFC

7523, DOI 10.17487/RFC7523, May 2015, <https://www.rfc-editor.org/info/rfc7523>.
ix Denniss, W., Bradley, J., Jones, M., and H. Tschofenig, "OAuth 2.0 Device Authorization Grant", RFC

8628, DOI 10.17487/RFC8628, August 2019, <https://www.rfc-editor.org/info/rfc8628>.
x Jones, M., Nadalin, A., Campbell, B., Ed., Bradley, J., and C. Mortimore, "OAuth 2.0 Token Exchange",

RFC 8693, DOI 10.17487/RFC8693, January 2020, <https://www.rfc-editor.org/info/rfc8693>.
xi Campbell, B., Bradley, J., Sakimura, N., and T. Lodderstedt, "OAuth 2.0 Mutual-TLS Client

Authentication and Certificate-Bound Access Tokens", RFC 8705, DOI 10.17487/RFC8705, February

2020, <https://www.rfc-editor.org/info/rfc8705> and Fett, D., Campbell, B., Bradley, J., Lodderstedt,

T., Jones, M., and D. Waite, "OAuth 2.0 Demonstrating Proof of Possession (DPoP)", RFC 9449, DOI

10.17487/RFC9449, September 2023, <https://www.rfc-editor.org/info/rfc9449>.
xii Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and P. Hunt, "OAuth 2.0 Dynamic Client

Registration Protocol", RFC 7591, DOI 10.17487/RFC7591, July 2015, <https://www.rfc-

editor.org/info/rfc7591>.
xiii Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0 Authorization Server Metadata", RFC 8414, DOI

10.17487/RFC8414, June 2018, <https://www.rfc-editor.org/info/rfc8414>.
xiv Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0 Threat Model and Security

Considerations", RFC 6819, DOI 10.17487/RFC6819, January 2013, <https://www.rfc-

editor.org/info/rfc6819>.
xv Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps", BCP 212, RFC 8252, DOI

10.17487/RFC8252, October 2017, <https://www.rfc-editor.org/info/rfc8252>.
xvi Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., Mortimore, C. “OpenID Connect Core 1.0

incorporating errata set 1,” OpenID Foundation, November 2014, https://openid.net/specs/openid-

connect-core-1_0.html.
xvii Maler, E. (ed.), Machulak, M., Richer, J. “User-Managed Access (UMA) 2.0 Grant for OAuth 2.0

Authorization,” Kantara Initiative, January 2018, https://docs.kantarainitiative.org/uma/wg/rec-oauth-

uma-grant-2.0.html.

https://doi.org/10.55621/idpro.45
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html
https://docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html

	Abstract
	About OAuth2
	Terminology

	Where to start
	Get a Token:
	Use the Token
	Validate the Token
	Beyond the Basics
	Scopes
	Get a Token (Also)
	Tokens
	Discovery

	Beyond OAuth2
	Additional Reading
	Author

