
 
Techniques To Approach Least 
Privilege 
Matthew K. Carter 
 
© 2022 IDPro, Matthew K. Carter 
 

To comment on this article, please visit our GitHub repository and submit an issue. 
 

Table of Contents 
ABSTRACT ..................................................................................................................................................... 2 
INTRODUCTION ........................................................................................................................................... 2 

TERMINOLOGY............................................................................................................................................... 2 
LEAST PRIVILEGE IN THE IDENTITY LIFECYCLE ........................................................................................ 3 

LEAST PRIVILEGE FOR ACTIVITIES ...................................................................................................................... 4 
JUST-IN-TIME PERMISSIONS ............................................................................................................................. 6 
LEAST PRIVILEGE RELATION TO POLICY-BASED ACCESS CONTROL......................................................................... 9 

SUMMARY...................................................................................................................................................10 
AUTHOR BIO ..............................................................................................................................................10 

 
  

https://github.com/IDPros/bok
https://docs.github.com/en/github/managing-your-work-on-github/opening-an-issue-from-code


 
Abstract 
This article will describe the lifecycle and techniques that access control practitioners 
should consider as they grant, validate, and refine permissions as they iterate toward 
least privilege. The article will compare just-in-time (JIT) approaches with long-standing 
permissions, balancing productivity with security. The article will explore the risks of 
using historical data to refine permissions. The reader will learn about refining least 
privilege in the context of an identity lifecycle and for a specific activity. The article will 
be agnostic in terms of cloud, hybrid and on-prem, as well as tools. 
 

Introduction 
 
Reducing excessive permissions is a continuous effort. Workforce members accumulate 
permissions throughout their employment, and job requirements change regularly. People 
take on temporary assignments, and organizations are typically better at granting 
permissions than taking them away. SaaS and IaaS providers are constantly changing the 
surface area of permissions that customers need to manage. It is a challenging balance to 
give employees, partners, and customers a sufficient level of privilege to digital resources 
without leaving an organization open to risk. The principle of least privilege is a hypothetical, 
best-case scenario of a human or non-human actor having only the permissions required 
to perform a task at the time it needs to be performed. Understanding techniques to create 
and refine permissions can help you approach least privilege and reduce the risk of an 
overly-permissive posture.  
 
This article will discuss least privilege in the context of identity lifecycle and building policy 
for specific activities. We will examine the advantages of long and short-term permission 
assignments, considering techniques like just-in-time (JIT) permissions. We will utilize roles 
as a way of grouping together permissions related to identity and activities. This utilization 
is a natural extension of Role-Based Access Control (RBAC), though not all organizations 
use roles to model permissions in the same way. Roles provide a natural way to 
encapsulate multiple permissions to reduce maintenance versus assigning multiple 
permissions to a human or non-human principal. We will contrast least privilege applied to 
RBAC and Policy-Based Access Control (PBAC), but roles will be the primary mechanism for 
grouping permissions in this article. 
 

Terminology 
Least Privilege - “The principle that a security architecture should be designed so 
that each entity is granted the minimum system resources and authorizations that 
the entity needs to perform its function.”i 
 



 
Account Takeover - Account takeover is a form of identity theft and fraud, where a 
malicious third party successfully gains access to a user’s account credentials.ii 
 
Access Certification - Certification is the ongoing review of who has which accesses (i.e., 
the business process to verify that access rights are correct).2 

 
Privileged Access Management - A mechanism for managing temporary access for 
accounts with high-risk permissions. PAM often involves check-out and check-in of a 
credential generated for a single use.  
 
Just-in-time (JIT) access - a technique where a credential or a permission is granted to a 
principal for a temporary timeframe when they need the permission to perform an activity. 
Access is revoked once the activity is complete, limiting its usage.  
 
Zero Standing Privilege (ZSP) - a state where JIT access is used for all permissions and no 
long-standing permissions are assigned to principals. 
 
Cloud Infrastructure Entitlement Management (CIEM) - a categorization of technologies 
focused on managing the granting, verification, and refinement of permissions for cloud 
and hybrid technologies. CIEM is often seen as a component of Identity Governance and 
Administration (IGA). 
 
Infrastructure-as-code - the process of managing and provisioning computer data centers 
through machine-readable definition files rather than physical hardware configuration or 
interactive configuration tools.iii 
 

Least Privilege in the Identity Lifecycle  
Least privilege can be applied at every stage of the identity lifecycle. Birthright entitlements 
should be continuously refined to help new employees to the workforce (joiners)iv be more 
productive on their first day while not giving excessive permissions that an inexperienced 
employee could accidentally misuse. Employees who change jobs (movers) inherit new 
permissions. They may require a ramp down of their previous job’s permissions during 
their transition, which can cause delays in permission revocation until the transition is 
complete. These delays can put companies at risk of violating the principle of separation of 
duties (SoD) if the new job permissions create a toxic combination with the previous job 
role. Departing employees (leavers) still need limited access to company assets, such as 
access to paystubs and W-2s. Ensuring the former employee’s post-employment credential 
has limited permissions may avoid damages.  
 
One misconception is that striving for least privilege in the workforce is due to a lack of 
trust in employees. Least privilege actually protects employees and employers by limiting 

https://bok.idpro.org/article/id/84/


 
their respective exposure. A new employee is often granted a set of birthright permissions 
based on their job assignment. The permissions that are available to that employee should 
be continually refined to add or remove permissions to better align with employee needs 
as they progress in their tenure. A surplus of permissions can result in exploitation. An 
employee is more likely to notice an account takeover if they are actively using a permission, 
as they are more likely to observe changes to the resource. 
 
In order to align the assigned permissions with the ever-shifting target of least privilege, 
organizations need to continually refine permissions granted through birthright and access 
requests. If these birthright permissions are managed through roles, the roles need to be 
analyzed for excessive permissions. If the roles do not apply consistently to the principals 
that the roles are assigned to, the roles should be refactored so that a role is 
representative of the activities that the principal needs to perform. A deficit of permissions 
will often cause productivity loss, so the risk of each permission needs to be evaluated to 
find the balance. 
 
Self-service access requests can incorporate least privilege approaches to ensure that 
temporary lifespans for entitlements are used for one-time actions. Long-standing 
permissions granted through self-service access requests are reviewed during access 
certification along with birthright permissions to refine permission, regardless of when the 
permission was granted. Temporary access might involve Privileged Access Management 
(PAM) or JIT permission techniques described below. 
 
During the Access Certification process, employees review who has access to resources. One 
guiding concept is removing unnecessary permissions that might create risk for an 
organization. This concept is one dimension of least privilege, where human and non-
human entities are evaluated for what each has access to. Managers and application 
owners are responsible for refining permissions to find the balance between productivity 
and security. This risk evaluation is what Access Governance solutions are built to achieve. 
Cloud Infrastructure Entitlement Management (CIEM) solutions also provide tools to help 
refine permissions for workforce employees.  
 
Unused permissions do not equate to unneeded permissions. Some activities are less 
frequent than a quarter, such as accessing tax documents, so avoid refinement based on 
static periods. Some activities may be less frequent than a year, such as activating a 
contingency plan, though hopefully, your company is rehearsing your business continuity 
planning.  
 

Least Privilege for Activities 
An activity, in this context, should be thought of as a set of resources and actions to 
perform a task. As an example, say you need to manage permissions for an infrastructure-
as-code (IaC) process that creates multiple digital assets of different resource types to 



 
create an application. You also need to manage permissions to operate this new 
application after deployment. The inclination to execute the IaC process as “Admin”v is 
understandable, as introspecting and defining governing policies for an unfamiliar set of 
resources and actions can be time-consuming. However, the temptation to continually 
operate as a privileged user can result in long-standing over-permission that can be 
targeted by unauthorized privilege escalation.  
 
An activity is often broken up into more granular actions and resources that are governed 
by the authorization system. For our IaC example, the process might contain create, 
modify, and delete actions for computing and data sources to set up and tear down the 
application. We will only consider the coarse-grained action-resource permissions in this 
article, for example, “create-compute” or “modify-database.”vi 
 
Two techniques for building least privilege roles for activities are fail-then-add and record-
then-replace. Each technique provides a different balance between security and 
productivity by limiting the usage of privileged access. 
 
For the fail-then-add technique, the infrastructure-as-code (IaC) process starts with no 
permissions. The IaC process is run, and when it fails due to authorization, that permission 
is granted. This sequence is repeated until the IaC process runs to completion. While this 
brute force approach may seem inefficient, the artifact role that it produces can be used 
for subsequent runs of the IaC process and reliably achieves least privilege for this activity. 
In order for the technique to be viable, you must have a clear feedback mechanism for the 
needed permission and transactional rollback capability. This technique also requires the 
practitioner to have a clear understanding of the required activities. Loosely adding 
permissions without a good understanding of the activities will lead to privilege creep, as 
revocation of superfluous additions rarely occurs after getting things to work. 
 
The preferable second technique is a record-then-replace approach, where the IaC 
process starts with a privileged role like “Admin” that allows all actions for every resource 
type in the IaC process. An event is recorded for each action taken by the IaC process via a 
mechanism like audit logs. Once the activity completes, you can extract the actions from 
the recorded events and assign the necessary permissions to a new “least privilege” role. 
Subsequent runs of the IaC process are performed with the new least privilege role, 
replacing the privileged “Admin” role. Using this new least privilege role gives you an 
activity-specific role that can be used for other principals. 
 
Basing least privilege on historical events like audit logs has a potential downside of 
incorporating unrelated or unauthorized permissions into the least privilege role if the 
unrelated or unauthorized activity is ongoing with that principal when the recording takes 
place. Check your recorded permissions to verify that extraneous permissions haven’t crept 
into your least privilege role. 
 



 
It’s important to separate out setup and destroy activity from operational activity. Setup 
and destroy are activities that may include privileged permissions that are excessive for 
human actors once the non-human activity is complete. For our IaC example, creating the 
compute and data storage, then modifying its policy may be a setup activity, while running 
queries and mutations are operational activity. Setup permissions are limited for the non-
human IaC process. When recording operations from your audit logs, stop the recording 
after setup to define the setup role. This prevents the modify-policy permission from being 
included in the operational role, leaving only query-data and mutate-data. An operator with 
modify-policy could grant themselves permissions, thereby violating the principle of least 
privilege.  
 
Work with your digital resource providers to set up notifications of changes to permissions. 
If your role contains any kind of permission set based on expressions like wildcards that 
allow new permissions to be automatically included, a change in resource permissions 
could introduce new risks and push you further away from least privilege. 
 

Just-in-Time Permissions 
Let’s consider the time component of least privilege. In general, a user principal having 
temporary access is more secure than long-standing access for the same permission. You 
will approach least privilege by only having the permission to execute an activity at the 
point-in-time the activity needs to be performed. Concurrent refinement of unnecessary 
permissions and a JIT approach to granting permissions bring us closer to least privilege. 
Keep in mind, however, that the overhead of managing temporary access and the 
productivity tax of having to ask each time may not make JIT a fit for every organization. 
 
In a long-standing model, even if the role permissions are refined over time, the principal’s 
effective permissions track with the role’s permissions. The principal has the permission 
when they need it as the permission persists through the role assignment. 
 



 

 
Figure 1:Long-standing Least Privilege Model 

 
Least privilege is an activity that must be evaluated at specific points in time when a 
principal must take an action or access protected information. In a JIT model, permissions 
are granted only for the period that they are needed to perform the activity, then are 
revoked. By separating temporary privileged access from long-standing role assignments 
and the permissions granted by the roles, there is less creep of excessive permissions for 
those long-standing roles.  
 



 

 
Figure 2: Just-in-time Least Privilege Model 

 
This JIT approach is analogous to Privileged Access Management (PAM) systems, which 
typically allows one to “check out” and “check in” a credential used to access a shared (and 
often sensitive) system. Instead of checking out a credential, though, the JIT approach 
enables the actor to check out a permission to be granted to perform the action. 
Alternatively, the JIT approach may allow the principal to check out the ability to assume a 
role with the necessary permissions to perform the activity. The permissions granted for 
that JIT access should also be continually refined. 
 
The risks with long-standing permissions or role assignments are related to unauthorized 
privilege escalation. If a credential of the principal is compromised or another principal is 
able to assume the role with the permission, a privilege escalation breach occurs. A JIT 
approach can mitigate the risk of the privilege escalation, as the principal of the 
compromised credential would not have a long-standing permission. The principal requires 
the additional step of checking out the role or permission. This mitigation assumes that the 
same compromised credential cannot be used for the “checking out” of the role or 
permission needed to escalate privilege. Thus, best practice dictates that the JIT system 
requires an additional authentication factor. For example, if typical operations utilize a 
fingerprint biometric, the privilege escalation might require a hardware device token.  
 
There is a balance between security, productivity, and convenience to consider when 
implementing least privilege. If the cost of building and maintaining refinement and JIT 
exceeds the impact of privilege escalation in your systems, you may choose to accept the 



 
risk of long-standing or unneeded permissions granted to principals. There is a productivity 
risk of being too surgical with permissions and interrupting work. Employees that have to 
constantly check out permissions to do their job may grow weary of the tax and find ways 
to circumvent the control.  
 

Least Privilege Relation to Policy-Based Access Control 
Typically, Policy-Based Access Control (PBAC)1 lends itself well to least privilege as its rules 
tend to be more granular than RBAC with the specification of specific resources and actions 
in. For example, the following natural language statement is representative of a PBAC rule: 
 
Allow read content if the reader’s clearance is higher than the content’s classification 
 
This statement grants the read-content permission based on a conditional comparison of 
an identity attribute, the reader’s clearance, to a resource attribute, which is the 
classification of the content. This rule could be updated to approach least privilege, 
perhaps by specifying a smaller population of readers or specifying which instance of the 
content server. However, this negates some of the value of PBAC as you have to have rules 
for each enumerated instance of the content server. Least privilege becomes a balance 
with the centralized policy decision nature of PBAC and maintainability that comes from 
having rules that can apply to multiple abstractions. 
 
PBAC lends itself to modeling least privilege in various dimensions. For example, to refine 
the content example toward least privilege, you might add a network expression that adds 
additional constraints on where readers can access content, or combine a risk engine score 
in a deny-override rule. 
 

Allow read content if the reader’s clearance is higher than the content’s classification and 
client.ip in a specified range 
AND 
Deny if read-content risk is greater than low 

 
Refining a policy-based approach to access control may inherently require less refinement 
than an RBAC model over time. It does, however, require rigor toward auditing PBAC rules 
that may grant unnecessary access for a population or has a path that isn’t reachable. 
Access governance is less mature in PBAC than in RBAC, so there may be less choice from 
commercial offerings in this area.  

 
1 More on Policy-Based Access Controls is available Mary K McKee, “Introduction to Policy-Based 
Access Controls (v2)” IDPro Body of Knowledge 1(8). doi:https://bok.idpro.org/article/id/61/ 



 
Summary 
Least privilege is an ever-shifting target that can act as a “north star” for your access 
governance teams to strive for in order to reduce the risk of unauthorized privilege 
escalation. Continuously refining permissions assigned during birthright, self-service access 
requests, and specific activities can limit the accumulation of privileged access that can be 
misused over time. Incorporating JIT strategies to grant permissions for short durations to 
achieve a temporary task reduces long-standing permissions. Organizations should 
consider the productivity risk from the over-refinement of permissions or the overhead of 
having to ask for permissions too frequently before investing in tools or processes. Monitor 
your provider’s permission model to ensure that newly introduced permissions do not 
introduce risk from your policies that use wildcards. As you commit to a role-based or 
policy-based access control model, your techniques for least privilege will vary, but the 
concepts will be consistent. Continuously evaluating these factors over the lifecycle of all 
identities and policies will reduce the surface area that can be exploited.  
 

Author Bio 
Matt Carter has worked in the identity and cloud security industry since 
joining Netegrity in 2000. Mr. Carter has worked in several roles, 
including product management, pre-sales, and implementation at 
companies like Oracle, AWS, and Axiomatics. Currently, he is a CIAM sales 
specialist at Okta. Matt has been active with IDPro as a certification test 
item writer and serves on the Book of Knowledge committee.   
 

Matt Carter lives in greater Boston with his wife, two dogs, two cats, and has three kids in 
college. He is into pickleball, kayaking on the Charles river, and science fiction. Fun fact: 
Matt once ran with the bulls in Pamplona...in flip-flops. 
 
 
 
 

 
i NIST Information Technology Laboratory, “least priviledge,” Computer Security Resource Center 
glossary, https://csrc.nist.gov/glossary/term/least_privilege (accessed 6 September 2022). 
ii Flanagan (Editor), H., (2021) “Terminology in the IDPro Body of Knowledge”, IDPro Body of Knowledge 
1(8). doi: https://doi.org/10.55621/idpro.41.  
iii Wikipedia contributors, "Infrastructure as code," Wikipedia, The Free Encyclopedia, 
https://en.wikipedia.org/w/index.php?title=Infrastructure_as_code&oldid=1100109083 (accessed 
September 6, 2022).  
iv More on Joiner, Mover, and Leaver is available in Cameron, A. & Grewe, O. (2022) “An Overview of 
the Digital Identity Lifecycle (v2)”, IDPro Body of Knowledge 1(7). doi: 
https://doi.org/10.55621/idpro.31.  

https://csrc.nist.gov/glossary/term/least_privilege
https://doi.org/10.55621/idpro.41
https://en.wikipedia.org/w/index.php?title=Infrastructure_as_code&oldid=1100109083
https://doi.org/10.55621/idpro.31


 
 

v “Admin” - shorthand term for a privileged user or role that has full control over a digital 
environment. The scope of “Admin” may vary, but represents a set of permissions that would allow a 
person controlling it to manipulate or damage assets and should be tightly controlled. 
vi An organization’s constraints for provisioning a resource like compute can be very specific in terms 
of policy. For instance, an organization may only want to allow a database to be created in a 
particular region, of a certain size, and with specific features enabled.  


	Abstract
	Introduction
	Terminology

	Least Privilege in the Identity Lifecycle
	Least Privilege for Activities
	Just-in-Time Permissions
	Least Privilege Relation to Policy-Based Access Control

	Summary
	Author Bio

