
 1

Introduction to Policy-Based Access

Controls (v3)
By Mary McKee

© 2021, 2022, 2023 IDPro, Mary McKee

Please see André Koot’s Introduction to Access Control for a primer on access controls.

To comment on this article, please visit our GitHub repository and submit an issue.

Table of Contents

TERMINOLOGY... 3

PBAC VS. RBAC: A COMPARISON .. 4

CONTEXT ...5
MODULARITY ...6
SYMMETRY ..7

WHEN RBAC IS PREFERABLE ... 9

IMPLEMENTING PBAC .. 10

BUILD REUSABLE COMPONENTS ... 10
FACILITATE GOVERNANCE AND AUDIT .. 11
SUPPORT SEPARATION OF CONCERNS ... 13

AUTHOR BIO .. 14

CHANGE LOG .. 14

https://bok.idpro.org/article/id/42/
https://github.com/IDPros/bok
https://docs.github.com/en/github/managing-your-work-on-github/opening-an-issue-from-code

 2

Abstract
The natural evolution of access controls has caused many organizations to adopt access

management paradigms that assign and revoke access based on structured and highly

reproducible rules.

One such paradigm is known as Policy-Based Access Control (PBAC), which is most

differentiated by two key characteristics:

1. Where other access control paradigms often optimize for ease of granting user

access to all relevant resources, PBAC optimizes for ease of extending resource access

to all applicable users.

2. PBAC facilitates the evaluation of context (time of day, location, etc.) in granting

access to a protected resource. Context is used to express who may access a resource

and the conditions under which that access is permissible.

Shifting the focus of access controls from the user to the resource allows PBAC systems

to be particularly resilient against shifts in organizational structure or regulatory

obligations. Including context (such as an authorized user’s location or device) allows for

additional security controls to be expressed and extended within resource permissions,

ensuring that all facets of access control are contained and auditable within a single

structure.

Because PBAC accommodates a very precise expression of who may access a resource

and under which circumstances, it lends itself to the automation of access provisioning

and deprovisioning in a way that provides ease of management as well as increased

security and adaptability.

Introduction

To effectively secure resources, access control systems must be designed to adapt to

rapid shifts in technology, regulatory obligations, and organizational structure. As

organizations embrace more sophisticated technology and seek protection from more

sophisticated threats, access management strategies are evolving to address modern

concerns.

Most early access management systems utilize what we now refer to as Discretionary

Access Control (DAC). With DAC systems (such as access control lists), administrators

manually assign privileges to users according to their understanding of need,

appropriate use, and organizational rules. As DAC systems grow in users, resources,

administrators, and/or age, their reliance on ad hoc management leads to

inconsistencies in application and understanding of access. As inappropriate access

often goes unnoticed and insufficient access creates visible business challenges, DAC

administrators are increasingly incentivized to be liberal with authorizations and

 3

conservative with access cleanup. As a result, DAC is often too costly, too inconsistent,

and too inflexible for modern needs.

Contemporary access control systems aim to promote consistency and efficiency by

granting access to resources through structured rules. Perhaps the best-known model

for abstracting access control so that permissions are based on rules is known as Role-

Based Access Control (RBAC). Through RBAC, permissions are associated with “roles”

assigned to users. This model effectively ensures that users with the same

responsibilities are consistently granted the same permissions. It encourages

governance by requiring that roles and their associated permissions be defined before

they can be used.

Further, RBAC is suitable for use in federated authorization scenarios where resource

permissions depend on the information provided by an external user authority. While

these are improvements over DAC, RBAC permissions are not resilient against shifts in

responsibility structure within an organization and are limited in how permissions can

be defined. These drawbacks, covered later in this article, make it difficult for RBAC

systems to ensure that users do not have more access than they need to perform

intended business functions (also known as the principle of least privilege i).

Policy-Based Access Control (PBAC) is a more robust paradigm for managing

permissions through structured rules in federated or non-federated contexts.

While the RBAC model intentionally bundles permissions, PBAC builds on a concept

known as Attribute-based Access Control (ABAC) to automate fine-grained,

decoupled permissions. Leveraging ABAC’s approach of calculating permissions based

on user information such as a job code or employment status, PBAC provides increased

precision by supporting appropriate access conditions (or context).

Terminology

● Access control system – a structure that manages and helps enforce decisions

about access within an organization.

● User or Subject – a person or entity who may receive access within an access

control system.

● Resource or Object – an asset protected by access controls, such as an

application, system, or door.

● Action – a protected operation available for a resource, such as “view”, “edit”, or

“submit”.

 4

● Permission – a statement of authorization for one or more subjects to perform

one or more actions on one or more objects.

● Context – conditions under which an action on a resource is authorized for a

subject, such as time of access, location of access, or a compliance state.

● Federated access controls – an access control architecture that accommodates

the separation of user/subject authority and resource/object authority.

● Discretionary access control – a pattern of access control system involving

static, manual definitions of permissions assigned directly to users.

● Role-based access control – a pattern of access control system involving sets of

static, manual definitions of permissions assigned to “roles”, which can be

consistently and repeatably associated with users with common access needs.

● Attribute-based access control (“ABAC”) / Claims-based access control

(“CBAC”) – a pattern of access control system involving dynamic definitions of

permissions based on information (“attributes”, or “claims”), such as job code,

department, or group membership.

● Policy-based access control – a pattern of access control system involving

dynamic definitions of access permissions based on user attributes (as in ABAC)

and context variables for permitting or denying access.

● Principle of least privilege – an information security best practice ensuring that

users in an access control system do not have more access to resources than is

necessary for their intended activities.

● Segment – a grouping of subjects that may be useful for authorizations, such as

full-time employees, undergraduate students, IT administrators, or clinicians.

● Abstraction – the practice of identifying and isolating repeated aspects of

operations or business logic so that they can be maintained in one place and

referenced in many places.

PBAC vs. RBAC: A Comparison
To better understand PBAC structures, it may be helpful to examine how they differ

from RBAC.

While the primary focus of RBAC permissions is the user, the primary focus for PBAC

permissions is the resource.

RBAC asks, “What types of users do I have, and what may they do in my environment?”.

Controls are constructed with subjects (who is getting access), permissions (what is

 5

being accessed or used), and roles (what permissions can be assigned to a subject)ii.

This looks like:

Subject Role Permission

Ada as Editor may Modify Documents

PBAC asks, “What types of resources do I have, and who/how may they be used or

managed?” Controls are constructed with subjects (who is getting access), actions

(what behavior is being discussed), objects (what resource is being accessed or used),

and context (environmental or other parameters defining acceptable access)iii. This

looks like:

Object Action Subject Context

Documents may

be

Modified by Those with “Editor” job

code

On managed

devices

Both examples abstract subjects to ensure that all editors are granted the necessary

permission. In the RBAC example, Ada acquires the permission because she has been

assigned to the “Editor” role through a manual or automated process. In the PBAC

example, Ada acquires the permission because the subject definition matches her

employee record, though the subject definition could also be a manual process, such as

the assignment of a group membership.

To make the most apples-to-apples comparison, imagine that an RBAC system adds Ada

to an “Editor” role, and a PBAC system adds her to an “Editor” group membership that is

referenced in access policies. Though these actions may seem nearly equivalent, the

PBAC architecture offers the following advantages: the flexibility to support different

situations (context), the ability to discretely handle changes without impacting other

permissions (modularity), and the capacity to handle real-time permission evaluation

(symmetry). Each of these factors promotes an organizationally consistent and

defensible approach to access control, as illustrated by the following examples:

Context
Ada’s employer may be subject to legal or compliance concerns that affect how

resources may be accessed. For example, when national security regulation (such as

export controls) restricts access from certain types of devices, relevant PBAC policies

can be amended to include this stipulation.

 6

If the company requires some form of training before resources can be accessed, this

too can be articulated as context. A “certification status” attribute can be maintained for

Ada based on records referenced from within or outside the authorizing organization.

Ada’s permissions can require that this status is current at the time of access. Instead of

laborious audit processes or managing infrastructure to revoke and reassign

permissions as compliance states change, Ada’s access is automatically blocked when

she is not compliant with training and automatically restored when she re-certifies her

training. Similarly, if Ada must consent to terms and conditions for the access she has

been granted, PBAC context can ensure that this has occurred in advance of any

interaction with the resource.

For security reasons, Ada may be expected to only access company resources from

safe-listed network spaces or with multi-factor authentication requirements that are

more stringent than those of users with lesser permissions. By codifying and enforcing

these requirements within the scope of the permission, Ada’s employer can easily

reference, manage, and adapt all access requirements in a single place.

Modularity

Because permissions granted by PBAC policies are not inherently interconnected as

they are with RBAC, they are highly modular and easier to manage with confidence.

When an organization needs to add, remove, or modify controls on a resource, policies

for that resource can be adapted exactly as needed without impacting other resources.

When permissions are bundled together, as in RBAC, accommodating new business

scenarios requires a broad analysis of existing permission groupings. Often,

administrators are forced to choose between a “close enough” access bundle that

carries unneeded permissions with it or contributing to a proliferation of bundles that

become increasingly difficult to understand and maintain.

For example, if senior leadership at Ada’s company selected her to edit sensitive

briefings for their investors, it is likely that she would need access atypical for editors.

An RBAC system admin charged with granting this access is likely to consider solutions

such as:

● Giving all editors the access Ada now needs, thus over-privileging other editors.

● Granting Ada a senior leadership role in addition to the editor role, thus over-

privileging Ada.

● Creating a new role for permissions specific to this need, setting a precedent of

provisional role creation for ad hoc needs.

● Re-engineering roles to offer a cleaner solution for this business scenario,

typically a costly exercise.

 7

Organizations with evolving access needs will generally not find it practical to redesign

RBAC roles each time an access need is not represented by an existing role. The

alternatives – over-privileging or over-complicating – promote an increasingly

lackadaisical approach to access management within the organization.

Symmetry

When there is a divergence between the criteria for granting access and criteria for

revoking access in a system, it is common for the system to accumulate permissions

that were at one time appropriate but would not be allowed under current policy. PBAC

systems are not susceptible to this permission spread because access control decisions

are made in real-time based on current attributes and context.

Since PBAC is an extension of ABAC, PBAC controls easily accommodate fully or partially

automated access based on attributes. An institution may wish to automatically grant

access to any current employee of a company, any employee who works at Office X, or

any employee who works at Office Y and is not currently on personal leave.

Automating how access is assigned simplifies the tasks of automating continuous

monitoring of permission validity and revoking permissions that are no longer allowable

under current rules. This creates symmetry between provisioning and deprovisioning of

access, minimizing system maintenance and remnant permissions.

PBAC is Practical

PBAC scales well because it is adaptable, and this adaptability can make it a practical

option for organizations of any size. Time saved with streamlined RBAC roles can be

quickly lost if the business impact of modifying a role (or its many associated

permissions) is unclear. This can disincentivize active and responsible management of

access controls and hamper growth in an organization of any size.

To illustrate how PBAC can be preferable even in a small organization, consider the

following scenario:

JE Plumbing starts as a small business comprised of five plumbers and an owner who

handles all administration.

Thanks to an excellent reputation and growing customer base, the owner is able to

expand the staff to twenty plumbers, who are supported by a business manager, three

sales representatives, and two finance specialists.

Over time, JE Plumbing sees an opportunity to expand the company’s coverage area and

offerings. To accomplish this, they set up two new locations overseen by two new

business managers (one of whom was an internal promotion from a finance specialist

position). They grow their residential plumber staff to seventy-five and hire twenty-five

commercial plumbers. Finance and sales positions are replicated across the two new

 8

offices, growing that team from two to six. A dedicated marketing specialist is hired to

cover all three sites.

An RBAC approach to this problem might start with two roles: an admin role for the

owner and a technician role for her staff. As the company grows, a business manager

might be trusted with the admin role, but new roles would need to be created for the

sales and finance specialists. After doubling from two to four roles, the role count

doubles again as the company splits the technician role into commercial technician and

residential technician, splits the sales and marketing role into distinct roles, formalizes

roles for business managers and customer service, and retains the original admin and

finance roles.

Though this example looks at JE Plumbing’s development at three points in time, it is

unlikely that the company would implement such broad shifts overnight. To preserve

security through incremental shifts in responsibility, a small business making strategic

organizational adjustments with limited working capital should consider the absence of

a role not included in this exercise: that of a full-time IT professional available to

perpetually re-engineer access management structures and adapt each system utilizing

them.

By contrast, a PBAC approach would start by looking at what resources JE Plumbing

needs to secure: work orders, customer information, invoices, inventory, employee

personal and licensing information, payroll data, and expense reports. Though

responsibility for these functions changes as the company adds staff, the functions

themselves remain the same. If the company expanded the nature of its business in

addition to the scale, permissions could easily be added to support the new functions

without interfering with existing functions.

This simple shift from expressing access controls from user-focused to resource-

focused allows for access control complexity to grow linearly rather than exponentially.

As a result, JE Plumbing can adapt permissions in step with organizational shifts without

managing a ballooning number of roles.

In addition to being more sustainable, PBAC also creates opportunities for the company

to reduce risk by setting the context for access. For example:

● When technicians can see all customer information, customers are at risk of

privacy violations, and the company is at risk of an employee exfiltrating that

information to help them start their own competing company. Perhaps

technicians need to see addresses to navigate to job sites but only need to see

information associated with open jobs assigned to them. Customer service may

need to see phone numbers and email addresses for all customers but may not

need address information.

● Only technicians making rounds need access to job information from out of the

office, so restricting other users’ access to internal IP addresses is an easy way to

 9

reduce the cyberattack surface for the company’s systems.

● Overexposure of work order information encourages employee speculation

about how the business is being run, which can result in misunderstandings or

inappropriate disclosures about operational practices.

● When technicians can be assigned to jobs at a business manager’s discretion,

there is a risk of a technician being sent on the job with a lapsed license. Policy-

based permissioning can require valid licensing before a job assignment can

occur.

Although organizations with modest access management needs may initially choose to

forgo PBAC features such as context limitations on access policies, committing early to

PBAC architecture for access controls allows for an organic and natural maturation of

access management rules over time - whether it be to accommodate more users, more

resources, and/or a more sophisticated security or risk management posture.

When RBAC is Preferable
This article has primarily compared policy-based access controls to role-based access

controls due to the prominence of RBAC as an access control strategy.

Some IAM professionals may be interested in implementing PBAC controls but must

work with systems that can only support RBAC. In these cases, it is sometimes

advantageous to rethink institutional roles in terms of resources or specific work

functions rather than permission bundles that will be difficult to adapt over time. As

long as an RBAC system accommodates multiple roles for a user, it should be possible

to achieve some advantages of PBAC (like modularity) within that system.

When choosing between RBAC and PBAC, it may be helpful to consider that PBAC can

be constructed to behave like RBAC more reliably than the reverse. For example, an

organization that prefers to think in terms of “roles” may choose to represent group

memberships as such, assigning those groups to many resource permissions to the

same end effect - one action results in the application of a defined set of permissions.

Conversely, options for applying a notion of context to RBAC permissions are often

limited.

While the increased flexibility and scalability of PBAC make it a strong choice for

protecting sensitive resources, it may be less approachable for casual users of an access

management system. Systems with straightforward and fairly static access controls,

especially those that delegate access management to end users rather than

administrators (such as those where content creators can authorize collaborators), may

find that the intuitiveness of a system like RBAC is more advantageous than the

flexibility of PBAC.

 10

Implementing PBAC
The key to building a successful access control environment is accommodating

changing business requirements. To promote ease and precision of access

management, the system should be neither too rigid nor too abstract.

To achieve this balance in a PBAC implementation, consider the following guiding

principles:

Build Reusable Components

Managing abstraction in PBAC means isolating parts of your policies that may be

applicable to other policies. The most obvious place where this applies is with user

segmentation.

For example, if you are constructing a policy to say that:

Object Action Subject Context

User profiles may be Updated by Business managers For full-time employees

“Business managers” and “full-time employees” are very likely to be used again in other

policies. Thus, creating a definition for these segments that can be used by one or more

policies is wise.

The ideal way to avoid these definitions becoming too granular and rigid is through

access management system implementations that allow for set logic - particularly

intersections (membership in set A AND set B), unions (membership in set A OR set B),

and complements (membership in set A, BUT NOT set B).

To expand on the previous example, if the policy above requires the following update:

Object Action Subject Context

User profiles may be Updated by Business managers

at the Detroit office

For full-time employees

at the Detroit office

The best way to solve this problem is usuallyiv to keep definitions of “business

managers” and “full-time employees” and add a third: “Detroit office.” The “Detroit

office” definition can then be used to update the subject of your policy (granting access

to the intersection of “business managers” and “Detroit office”) as well as a context

variable (scoping that access to the intersection of “full-time employees” and “Detroit

office”).

 11

This approach makes it possible to achieve the same ease of assigning a permission to a

group of individuals as you might in RBAC, with the benefits of avoiding

interdependence between permissions, being able to cleanly segment objects as well as

subjects, and supporting specificity through permission contexts (such as user groups,

device identifiers, IP address ranges, or document classifications).

Facilitate Governance and Audit
A good access control system will allow auditors and business owners engaged in

access governance to understand existing precedents in organizational access controls,

analyze how they may need to be extended or modified, and ascertain the business

impact of proposed changes.

When designing a PBAC system, it is important to make sure that subjects, actions,

objects, and contexts are stored in a way that makes it straightforward to report on

access from any of these perspectives. Business owners and auditors should have easy

access to reports that answer questions about access users have, users able to access

resources of interest, and allowable contexts for any actions defined for a resource.

The expressiveness of PBAC permissions makes it realistic to define all access

considerations within policies. This flexibility is advantageous over implementing

additional security measures (such as IP restrictions) outside of an organizational access

control system. It allows for a single source of truth about circumstances under which

access is allowed.

Being able to report on permissions in this way facilitates the examination of current

rules for access to a resource. Good reporting may also include users who currently

meet these criteria. Though PBAC is often used in federated contexts where identity

(and other contextual) information for all potential users is not available to the resource

administrator, such user reports can be helpful for spot-checking, especially in the

context of a proposed change. Reports on who would gain or lose access under a

proposed policy support business owners and auditors in refining controls to best

facilitate organizational needs and security.

Embrace States over Events

Business processes are often developed with flowcharts, which are focused on events.

This often leads to access management systems that are implemented on events that

mimic flowcharts, such as assigning access when a new employee is hired.

Being based on observable attributes, PBAC policies tend to be more focused on states,

such as an employee’s current position. This offers several advantages:

● Fewer states than events: Access provisioning that is triggered when an

employee first enters a position may need to account for nuances between

external hires, internal transfers, and promotions. Unexpected events may

occur, such as a canceled termination. Rather than tracking all potentially

 12

relevant business events, an access policy can simply apply to anyone currently

holding the position.

● Local process changes: Access management teams are much more likely to be

informed of changes to relevant states (e.g., employment, company policy,

business functions) than to changes to events (e.g., how many processes can be

used to hire staff, changes to the company network, infrastructure upgrades,

etc.).

When departmental processes shift in ways that affect the detection of events

driving access, access management teams become responsible for investigating

the resulting inconsistencies and may not be confident that their systems are

functioning as intended.

● States are more reconcilable: Events occur at a point in time, which makes

them more difficult to audit for appropriateness. For example, someone might

have access through a legacy process that has since been revised (and should

retain access) or because a deprovisioning was attempted (and should lose

access) but was not completed. Without a current policy to compare against, it

becomes very difficult to determine whether existing permissions are

appropriate, further eroding trust in the system.

Because states are continuously observable, compliance with policies defined by

state can be easily validated, and the impact of proposed changes to such

policies can be easily measured.

To workshop access rules that can generate robust PBAC policies, consider dropping

the flowchart arrows and working only with circles representing conditions. Arranging

these circles as a Venn or Eulerv diagram allows for a discussion of acceptable

conditions for access that will result in cleaner and more robust policies.

Event-based Permission Design State-based Permission Design

Looks like: Flowcharts

Results in: Rigid and sequential workflows,

point-in-time validation, complicated

deprovisioning logic.

Looks like: Overlapping circles

Results in: Flexible and parallel workflows,

continuous validation, harmony between

provisioning and deprovisioning.

 13

Support Separation of Concerns

More advanced guidance around PBAC may include references to standards such as

OASIS’ eXtensible Access Control Markup Language (XACML)vi. Such standards can be

particularly useful when it is desirable to maintain separation between components of a

PBAC system, such as federated systems, or when policies are based on sensitive data.

Consider the example of a scientific instrument subject to federal law requiring all users

to be either a citizen or legal permanent resident of their country, and additionally with

a clean background check performed within the last three years. To enforce this policy

without exposing sensitive information like citizenship, immigration status, and

background check results to the instrument, the managing organization could

implement a separation of policy evaluation and policy enforcement such that the

source systems for this data send the instrument a compliance status rather than the

raw information needed to make a local access decision. In federated contexts, similar

approaches are useful for reducing sensitive data exchange across

organizational boundaries.

Conclusion

Access control systems promote and implement an organization’s access control

strategy as changes occur in users, personnel, responsibilities, organizational structure,

and legal obligations. Most failures with access management are due to a system

implementation that is too manual to scale or too brittle to adapt to changing business

needs without costly and time-consuming re-architecture efforts.

While it is common to try to optimize access control systems for efficiency in granting

access, a truer measure of a robust access control system is how reliably it can revoke

access. Policy-based access controls support the security principle of least privilege by

offering logical symmetry between access assignment and revocation. Defining policy

for access allows access to be dynamically evaluated for validity and automatically

revoked or reported as soon as that access becomes invalid under current policy.

 14

Developing access controls from a resource-first perspective and adding a notion of

context to these controls allows PBAC systems to maximize resource security over

convenience of access assignment. While these systems can initially be more complex

than other approaches, the atomic nature of policies and their relative resilience against

the buildup of legacy permissions makes for a system that is much more maintainable

over time as compared to more limited rule-based access management systems like

RBAC.

Author Bio
Mary McKee began her career as a web application developer, eventually specializing in

and leading teams dedicated to maturing processes in Identity Management and

Cybersecurity. She now works as Senior Director of Engineering at Cirrus Identity.

Acknowledgments
The author would like to thank André Koot and Andrew Hindle for their thoughtful

responses to earlier versions of this article, and Heather Flanagan, Christienna Fryar,

Dave Wible, and Mary Ellen Wible for their feedback and support with its development.

Change Log
Date Change

2023-10-27 V3 published; clarification to Embrace States over Events, Support Separation of
Concerns, and author bio

2022-06-03 V2 published; Clarified scope as an introductory article; replaced section on static
access controls; removed section on privacy

2021-04-19 V1 published

i “Least Privilege,” https://us-cert.cisa.gov/bsi/articles/knowledge/principles/least-privilege

(accessed February 10, 2020)
ii “Role-based access control,” https://en.wikipedia.org/wiki/Role-based_access_control (accessed

February 10, 2020)
iii“Attribute-based access control,” https://en.wikipedia.org/wiki/Attribute-based_access_control

(accessed February 10, 2020)
iv The examples in this section are meant to illustrate optimizing for set math capability within a

context where both the identity provider (or user attribute store) and the service provider (or

resource to be protected) exist within a common environment, and does not extend to federated

contexts where a service provider may be interacting with one or more externally controlled

identity providers. It is, however, worth noting that PBAC (/ABAC/CBAC) can easily accommodate

these externalities.
v “Euler diagram,” https://en.wikipedia.org/wiki/Euler_diagram, (accessed February 25, 2020)

https://us-cert.cisa.gov/bsi/articles/knowledge/principles/least-privilege
https://en.wikipedia.org/wiki/Role-based_access_control
https://en.wikipedia.org/wiki/Attribute-based_access_control
https://en.wikipedia.org/wiki/Euler_diagram

 15

vi“eXtensible Access Control Markup Language (XACML) Version 3.0 Plus Errata 01,”

https://docs.oasis-open.org/xacml/3.0/errata01/os/xacml-3.0-core-spec-errata01-os-

complete.pdf (accessed May 20, 2022)

https://docs.oasis-open.org/xacml/3.0/errata01/os/xacml-3.0-core-spec-errata01-os-complete.pdf
https://docs.oasis-open.org/xacml/3.0/errata01/os/xacml-3.0-core-spec-errata01-os-complete.pdf

	Terminology
	PBAC vs. RBAC: A Comparison
	Context
	Modularity
	Symmetry

	When RBAC is Preferable
	Implementing PBAC
	Build Reusable Components
	Facilitate Governance and Audit
	Support Separation of Concerns

	Author Bio
	Change Log

