
 1

Introduction to Policy-Based Access
Controls (v2)
By Mary McKee
© 2022 IDPro, Mary McKee

For a primer on access controls, please see André Koot’s Introduction to Access Control.

To comment on this article, please visit our GitHub repository and submit an issue.

Table of Contents

TERMINOLOGY .. 3
PBAC VS. RBAC: A COMPARISON ... 4

CONTEXT .. 5
MODULARITY ... 6
SYMMETRY .. 7

WHEN RBAC IS PREFERABLE .. 9
IMPLEMENTING PBAC .. 10

BUILD REUSABLE COMPONENTS .. 10
FACILITATE GOVERNANCE AND AUDIT ... 11
SUPPORT SEPARATION OF CONCERNS .. 13

AUTHOR BIO .. 14
CHANGE LOG .. 14

 2

Abstract
The natural evolution of access controls has caused many organizations to adopt access
management paradigms that assign and revoke access based on structured and highly
reproducible rules.

One such paradigm is known as Policy-Based Access Control (PBAC), which is most
differentiated by two key characteristics:

1. Where other access control paradigms often optimize for ease of granting user
access to all relevant resources, PBAC optimizes for ease of extending resource access
to all applicable users.

2. PBAC facilitates the evaluation of context (time of day, location, etc.) in granting
access to a protected resource. Context is used to express who may access a resource
and the conditions under which that access is permissible.

Shifting the focus of access controls from the user to the resource allows PBAC systems
to be particularly resilient against shifts in organizational structure or regulatory
obligations. The inclusion of context (such as an authorized user’s location or device)
allows for additional security controls to be expressed and extended within resource
permissions themselves, ensuring that all facets of access control are contained and
auditable within a single structure.

Because PBAC accommodates a very precise expression of who may access a resource
and under which circumstances, it lends itself to the automation of access provisioning
and deprovisioning in a way that provides ease of management as well as increased
security and adaptability.

Introduction
To effectively secure resources, access control systems must be designed to adapt to
rapid shifts in technology, regulatory obligations, and organizational structure. As
organizations embrace more sophisticated technology and seek protection from more
sophisticated threats, access management strategies are evolving to address modern
concerns.

Most early access management systems utilize what we now refer to as Discretionary
Access Control (DAC). With DAC systems (such as access control lists), administrators
manually assign privileges to users according to their understanding of need,
appropriate use, and organizational rules. As DAC systems grow in users, resources,
administrators, and/or age, their reliance on ad hoc management leads to
inconsistencies in application and understanding of access. As inappropriate access
often goes unnoticed and insufficient access creates visible business challenges, DAC
administrators are increasingly incentivized to be liberal with authorizations and

 3

conservative with access cleanup. As a result, DAC is often too costly, too inconsistent,
and too inflexible for modern needs.

Contemporary access control systems aim to promote consistency and efficiency by
granting access to resources through structured rules. Perhaps the best-known model
for abstracting access control so that permissions are based on rules is known as Role-
Based Access Control (RBAC). Through RBAC, permissions are associated with “roles”
which are assigned to users. This model is effective in ensuring that users with the
same responsibilities are consistently granted the same permissions and encourages
governance by requiring that roles and their associated permissions be defined before
they can be used. Further, RBAC is suitable for use in federated authorization scenarios
where resource permissions depend on the information provided by an external user
authority. While these are improvements over DAC, RBAC permissions are not resilient
against shifts in responsibility structure within an organization and are limited in how
permissions can be defined. These drawbacks, covered later in this article, make it
difficult for RBAC systems to ensure that users do not have more access than they need
to perform intended business functions (also known as the principle of least privilegei).

Policy-Based Access Control (PBAC) is a more robust paradigm for managing
permissions through structured rules in federated or non-federated contexts.

While the RBAC model intentionally bundles permissions, PBAC builds on a concept
known as Attribute-based Access Control (ABAC) to automate fine-grained,
decoupled permissions. Leveraging ABAC’s approach of calculating permissions based
on user information such as a job code or employment status, PBAC provides increased
precision by supporting appropriate conditions (or context) for access.

Terminology

● Access control system – a structure that manages and helps enforce decisions
about access within an organization.

● User or Subject – a person or entity who may receive access within an access
control system.

● Resource or Object – an asset protected by access controls, such as an
application, system, or door.

● Action – a protected operation available for a resource, such as “view”, “edit”, or
“submit”.

● Permission – a statement of authorization for one or more subjects to perform
one or more actions on one or more objects.

 4

● Context – conditions under which an action on a resource is authorized for a
subject, such as time of access, location of access, or a compliance state.

● Federated access controls – an access control architecture that accommodates
separation of user/subject authority and resource/object authority.

● Discretionary access control – a pattern of access control system involving
static, manual definitions of permissions assigned directly to users.

● Role-based access control – a pattern of access control system involving sets of
static, manual definitions of permissions assigned to “roles”, which can be
consistently and repeatably associated with users with common access needs.

● Attribute-based access control (“ABAC”) / Claims-based access control

(“CBAC”) – a pattern of access control system involving dynamic definitions of
permissions based on information (“attributes”, or “claims”), such as job code,
department, or group membership.

● Policy-based access control – a pattern of access control system involving
dynamic definitions of access permissions based on user attributes (as in ABAC)
and context variables for permitting or denying access.

● Principle of least privilege – an information security best practice ensuring that
users in an access control system do not have more access to resources than is
necessary for their intended activities.

● Segment – a grouping of subjects that may be useful for authorizations, such as
full-time employees, undergraduate students, IT administrators, or clinicians.

● Abstraction – the practice of identifying and isolating repeated aspects of
operations or business logic so that they can be maintained in one place and
referenced in many places.

PBAC vs. RBAC: A Comparison
To better understand PBAC structures, it may be helpful to examine how they differ
from RBAC.

While the primary focus of RBAC permissions is the user, the primary focus for PBAC
permissions is the resource.

RBAC asks, “what types of users do I have, and what may they do in my
environment?”. Controls are constructed with subjects (who is getting access),
permissions (what is being accessed or used), and roles (what permissions can be
assigned to a subject)ii. This looks like:

 5

Subject Role Permission

Ada as Editor may Modify Documents

PBAC asks, “what types of resources do I have, and who/how may they be used or
managed?”. Controls are constructed with subjects (who is getting access), actions
(what behavior is being discussed), objects (what resource is being accessed or used),
and context (environmental or other parameters defining acceptable access)iii. This
looks like:

Object Action Subject Context

Documents may
be

Modified by Those with “Editor” job
code

On managed
devices

Both examples abstract subjects to ensure that all editors are granted the necessary
permission. In the RBAC example, Ada acquires the permission because she has been
assigned to the “Editor” role through a manual or automated process. In the PBAC
example, Ada acquires the permission because the subject definition matches her
employee record, though the subject definition could also be a manual process, such as
the assignment of a group membership.

To make the most apples-to-apples comparison, imagine that an RBAC system adds Ada
to an “Editor” role and a PBAC system adds her to an “Editor” group membership that is
referenced in access policies. Though these actions may seem nearly equivalent, the
PBAC architecture offers the following advantages: the flexibility to support different
situations (context), the ability to discretely handle changes without impacting other
permissions (modularity), and the capacity to handle real-time permission evaluation
(symmetry). Each of these factors promotes an organizationally consistent and
defensible approach to access control, as illustrated by the following examples:

Context
Ada’s employer may be subject to legal or compliance concerns that affect how
resources may be accessed. For example, when national security regulation (such as
export controls) restricts access from certain types of devices, relevant PBAC policies
can be amended to include this stipulation.

If the company requires some form of training before resources can be accessed, this
too can be articulated as context. A “certification status” attribute can be maintained for
Ada based on records referenced from within or outside the authorizing organization.
Ada’s permissions can require that this status is current at the time of access. Instead

 6

of laborious audit processes or managing infrastructure to revoke and reassign
permissions as compliance states change, Ada’s access is automatically blocked when
she is not compliant with training and automatically restored when she re-certifies her
training. Similarly, if Ada must consent to terms and conditions for the access she has
been granted, PBAC context can ensure that this has occurred in advance of any
interaction with the resource.

For security reasons, Ada may be expected to only access company resources from
safe-listed network spaces or with multi-factor authentication requirements that are
more stringent than those of users with lesser permissions. By codifying and enforcing
these requirements within the scope of the permission, Ada’s employer can easily
reference, manage, and adapt all access requirements in a single place.

Modularity
Because permissions granted by PBAC policies are not inherently interconnected as
they are with RBAC, they are highly modular and easier to manage with
confidence. When an organization needs to add, remove, or modify controls on a
resource, policies for that resource can be adapted exactly as needed without impact on
other resources.

When permissions are bundled together, as in RBAC, accommodating new business
scenarios requires a broad analysis of existing permission groupings. Often,
administrators are forced to choose between a “close enough” access bundle that
carries unneeded permissions with it, or contributing to a proliferation of bundles that
becomes increasingly difficult to understand and maintain.

For example, if senior leadership at Ada’s company selected her to edit sensitive
briefings for their investors, it is likely that she would need access atypical for
editors. An RBAC system admin charged with granting this access is likely to consider
solutions such as:

● Giving all editors the access Ada now needs, thus over-privileging other editors.

● Granting Ada a senior leadership role in addition to the editor role, thus over-
privileging Ada.

● Creating a new role for permissions specific to this need, setting a precedent of
provisional role creation for ad hoc needs.

● Re-engineering roles to offer a cleaner solution for this business scenario,
typically a costly exercise.

 7

Organizations with evolving access needs will generally not find it practical to redesign
RBAC roles each time an access need is not represented by an existing role. The
alternatives – over-privileging or over-complicating – promote an increasingly
lackadaisical approach to access management within the organization.

Symmetry
When there is a divergence between criteria for granting access and criteria for revoking
access in a system, it is common for the system to accumulate permissions that were at
one time appropriate but would not be allowed under current policy. PBAC systems are
not susceptible to this permission spread because access control decisions are made in
real time based on current attributes and context.

Since PBAC is an extension of ABAC, PBAC controls easily accommodate fully or partially
automated access based on attributes. An institution may wish to automatically grant
access to any current employee of a company, or any employee who works at Office X,
or any employee who works at Office Y and is not currently on personal leave.

Automating how access is assigned simplifies the tasks of automating continuous
monitoring of permission validity and revoking permissions that are no longer allowable
under current rules. This creates symmetry between provisioning and deprovisioning
of access, minimizing system maintenance and remnant permissions.

PBAC is Practical

PBAC scales well because it is adaptable, and this adaptability can make it a practical
option for organizations of any size. Time saved with streamlined RBAC roles can be
quickly lost if the business impact of modifying a role (or its many associated
permissions) is unclear. This can disincentivize active and responsible management of
access controls and hamper growth in an organization of any size.

To illustrate how PBAC can be preferable even in a small organization, consider the
following scenario:

JE Plumbing starts as a small business comprised of five plumbers and an owner who
handles all administration.

Thanks to an excellent reputation and growing customer base, the owner is able to
expand the staff to twenty plumbers who are supported by a business manager, three
sales representatives, and two finance specialists.

Over time, JE Plumbing sees an opportunity to expand the company’s coverage area and
offerings. To accomplish this, they set up two new locations overseen by two new
business managers (one of whom was an internal promotion from a finance specialist
position). They grow their residential plumber staff to seventy-five and hire twenty-five
commercial plumbers. Finance and sales positions are replicated across the two new

 8

offices, growing that team from two to six. A dedicated marketing specialist is hired to
cover all three sites.

An RBAC approach to this problem might start with two roles: an admin role for the
owner and a technician role for her staff. As the company grows, a business manager
might be trusted with the admin role, but new roles would need to be created for the
sales and finance specialists. After doubling from two to four roles, the role count
doubles again as the company splits the technician role into commercial technician and
residential technician, splits the sales and marketing role into distinct roles, formalizes
roles for business managers and customer service, and retains the original admin and
finance roles.

Though this example looks at JE Plumbing’s development at three points in time, it is
unlikely that the company would implement such broad shifts overnight. To preserve
security through incremental shifts in responsibility, a small business making strategic
organizational adjustments with limited working capital should consider the absence of
a role not included in this exercise: that of a full-time IT professional available to
perpetually re-engineer access management structures and adapt each system utilizing
them.

By contrast, a PBAC approach would start by looking at what resources JE Plumbing
needs to secure: work orders, customer information, invoices, inventory, employee
personal and licensing information, payroll data, and expense reports. Though
responsibility for these functions changes as the company adds staff, the functions
themselves remain the same. If the company expanded the nature of their business in
addition to the scale, permissions could easily be added to support the new functions
without interfering with existing functions.

This simple shift from expressing access controls from user-focused to resource-
focused allows for access control complexity to grow linearly rather than
exponentially. As a result, JE Plumbing can adapt permissions in step with
organizational shifts without managing a ballooning number of roles.

In addition to being more sustainable, PBAC also creates opportunities for the company
to reduce risk by setting the context for access. For example:

● When technicians can see all customer information, customers are at risk of
privacy violations, and the company is at risk of an employee exfiltrating that
information to help them start their own competing company. Perhaps
technicians need to see addresses to navigate to job sites but only need to see
information associated with open jobs assigned to them. Customer service may
need to see phone numbers and email addresses for all customers but may not
need address information.

● Only technicians making rounds need access to job information from out of the
office, so restricting other users’ access to internal IP addresses is an easy way to

 9

reduce the cyberattack surface for the company’s systems.

● Overexposure of work order information encourages employee speculation
about how the business is being run, which can result in misunderstandings or
inappropriate disclosures about operational practices.

● When technicians can be assigned to jobs at a business manager’s discretion,
there is a risk of a technician being sent on the job with a lapsed license. Policy-
based permissioning can require valid licensing before job assignment can
occur.

Although organizations with modest access management needs may initially choose to
forgo PBAC features such as context limitations on access policies, committing early to
PBAC architecture for access controls allows for an organic and natural maturation of
access management rules over time - whether it be to accommodate more users, more
resources, and/or a more sophisticated security or risk management posture.

When RBAC is Preferable
This article has primarily compared policy-based access controls to role-based access
controls due to the prominence of RBAC as an access control strategy.

Some IAM professionals may be interested in implementing PBAC controls but must
work with systems that can only support RBAC. In these cases, it is sometimes
advantageous to rethink institutional roles in terms of resources or specific work
functions rather than permission bundles that will be difficult to adapt over time. As
long as an RBAC system accommodates multiple roles for a user, it should be possible
to achieve some advantages of PBAC (like modularity) within that system.

When choosing between RBAC and PBAC, it may be helpful to consider that PBAC can
be constructed to behave like RBAC more reliably than the reverse. For example, an
organization that prefers to think in terms of “roles” may choose to represent group
memberships as such, assigning those groups to many resource permissions to the
same end effect - one action results in the application of a defined set of permissions.
Conversely, options for applying a notion of context to RBAC permissions are often
limited.

While the increased flexibility and scalability of PBAC makes it a strong choice for
protecting sensitive resources, it may be less approachable for casual users of an access
management system. Systems with straightforward and fairly static access controls and
especially those that delegate access management to end users rather than
administrators (such as those where content creators can authorize collaborators) may
find that the intuitiveness of a system like RBAC is more advantageous than the
flexibility of PBAC.

 10

Implementing PBAC
The key to building a successful access control environment is accommodating
changing business requirements. To promote ease and precision of access
management, the system should be neither too rigid nor too abstract.

To achieve this balance in a PBAC implementation, consider the following guiding
principles:

Build Reusable Components
Managing abstraction in PBAC means isolating parts of your policies that may be
applicable to other policies. The most obvious place where this applies is with user
segmentation.

For example, if you are constructing a policy to say that:

Object Action Subject Context

User profiles may be Updated by Business managers For full-time employees

“Business managers” and “full-time employees” are very likely to be used again in other
policies. Thus, creating a definition for these segments that can be used by one or
more policies is wise.

The ideal way to avoid these definitions becoming too granular and rigid is through
access management system implementations that allow for set logic - particularly
intersections (membership in set A AND set B), unions (membership in set A OR set B),
and complements (membership in set A, BUT NOT set B).

To expand on the previous example, if the policy above requires the following update:

Object Action Subject Context

User profiles may be Updated by Business managers
at the Detroit office

For full-time employees
at the Detroit office

The best way to solve this problem is usuallyiv to keep definitions of “business
managers” and “full-time employees” and add a third: “Detroit office.” The “Detroit
office” definition can then be used to update the subject of your policy (granting access
to the intersection of “business managers” and “Detroit office”) as well as a context
variable (scoping that access to the intersection of “full-time employees” and “Detroit
office”).

 11

This approach makes it possible to achieve the same ease of assigning a permission to a
group of individuals as you might in RBAC, with the benefits of avoiding
interdependence between permissions, being able to cleanly segment objects as well as
subjects, and supporting specificity through permission contexts (such as user groups,
device identifiers, IP address ranges, or document classifications).

Facilitate Governance and Audit
A good access control system will allow auditors and business owners engaged in
access governance to understand existing precedents in organizational access controls,
analyze how they may need to be extended or modified, and ascertain the business
impact of proposed changes.

When designing a PBAC system, it is important to make sure that subjects, actions,
objects, and contexts are stored in a way that makes it straightforward to report on
access from any of these perspectives. Business owners and auditors should have easy
access to reports that answer questions about access users have, users able to access
resources of interest, and allowable contexts for any actions defined for a resource.

The expressiveness of PBAC permissions makes it realistic to define all access
considerations within policies. This flexibility is advantageous over implementing
additional security measures (such as IP restrictions) outside of an organizational access
control system. It allows for a single source of truth about circumstances under which
access is allowed.

Being able to report on permissions in this way facilitates the examination of current
rules for access to a resource. Good reporting may also include users who currently
meet these criteria. Though PBAC is often used in federated contexts where identity
(and other contextual) information for all potential users is not available to the resource
administrator, such user reports can be helpful for spot-checking, especially in the
context of a proposed change. Reports on who would gain or lose access under a
proposed policy support business owners and auditors in refining controls to best
facilitate organizational needs and security.

Embrace States over Events

Business processes are often developed with flowcharts, which are focused on events.
This often leads to access management systems that are implemented on events that
mimic flowcharts, such as assigning access when a new employee is hired.

Being based on observable attributes, PBAC policies tend to be more focused on states,
such as an employee’s current position. This offers several advantages:

 12

● Fewer states than events: Access provisioning that is triggered when an
employee first enters a position may need to account for nuances between
external hires, internal transfers, and promotions. Unexpected events may
occur, such as a cancelled termination. Rather than tracking all potentially
relevant business events, an access policy can simply apply to anyone currently
holding the position.

● Local process changes: Access management teams are much more likely to be
informed of changes to relevant states (e.g., employment, company policy,
business functions) than to changes to events (e.g., how many processes can be
used to hire staff, changes to the company network, infrastructure upgrades,
etc.).

When departmental processes shift in ways that affect detection of events
driving access, access management teams become responsible for investigating
the resulting inconsistencies and may not be confident that their systems are
functioning as intended.

● States are more reconcilable: Events occur at a point in time, which makes
them more difficult to audit for appropriateness. For example, someone might
have access through a legacy process that has since been revised (and should
retain access) or because a deprovisioning was attempted (and should lose
access) but was not completed. Without a current policy to compare against, it
becomes very difficult to determine whether existing permissions are
appropriate, further eroding trust in the system.

States are continuously observable, which allows for automated reconciliation of
access to ensure it is allowable under current policy and analysis of impact of
proposed changes to policies.

To workshop access rules that can generate robust PBAC policies, consider dropping
the flowchart arrows and working only with circles representing conditions. Arranging
these circles as a Venn or Eulerv diagram allows for a discussion of acceptable
conditions for access that will result in cleaner and more robust policies.

Event-based Permission Design State-based Permission Design

Looks like: Flowcharts

Results in: Rigid and sequential workflows,
point-in-time validation, complicated
deprovisioning logic.

Looks like: Overlapping circles

Results in: Flexible and parallel workflows,
continuous validation, harmony between
provisioning and deprovisioning.

 13

Support Separation of Concerns

More advanced guidance around PBAC may include references to standards such as
OASIS’ eXtensible Access Control Markup Language (XACML)vi. Such standards can be
particularly useful when it is desirable to maintain separation between components of a
PBAC system, such as federated systems or when policies are based on sensitive data.

Consider the example of a scientific instrument subject to federal law requiring all users
to be either a citizen or legal permanent resident of their country, and additionally with
a clean background check performed within the last three years. To enforce this policy
without sharing citizenship, immigration status, and background check results to the
instrument. By maintaining separation between policy definition, policy evaluation, and
policy enforcement, the managing organization can meet its legal obligations without
propagating sensitive user data across the resources it oversees (or, in federated
contexts, across organizational boundaries).

Conclusion
Access control systems promote and implement an organization’s access control
strategy as changes occur in users, personnel, responsibilities, organizational structure,
and legal obligations. Most failures with access management are due to a system
implementation that is too manual to scale or too brittle to adapt to changing business
needs without costly and time-consuming re-architecture efforts.

While it is common to try to optimize access control systems for efficiency in granting
access, a truer measure of a robust access control system is how reliably it can revoke
access. Policy-based access controls support the security principle of least privilege by
offering logical symmetry between access assignment and revocation. Defining policy
for access allows access to be dynamically evaluated for validity, and automatically
revoked or reported as soon as that access becomes invalid under current policy.

 14

Developing access controls from a resource-first perspective and adding a notion of
context to these controls allows PBAC systems to maximize resource security over
convenience of access assignment. While these systems can initially be more complex
than other approaches, the atomic nature of policies and their relative resilience against
buildup of legacy permissions makes for a system that is much more maintainable over
time as compared to more limited rule-based access management systems like RBAC.

Author Bio

Mary McKee works as Deputy Chief Information Security Officer and Senior Director of
Identity Management and Security Services at Duke University, where she studied
Computer Science as an undergraduate and was subsequently hired as a web
application developer. Her interest in abstraction and interoperability brought her to
Identity and Access Management and subsequently, Information Security.

Acknowledgments
The author would like to thank André Koot and Andrew Hindle for their thoughtful
responses to earlier versions of this article, and Heather Flanagan, Christienna Fryar,
Dave Wible, and Mary Ellen Wible for their feedback and support with its development.

Change Log
Date Change
2022-06-03 V2 published; Clarified scope as an introductory article; replaced section on static

access controls; removed section on privacy
2021-04-19 V1 published

i “Least Privilege,” https://us-cert.cisa.gov/bsi/articles/knowledge/principles/least-privilege
(accessed February 10, 2020)
ii “Role-based access control,” https://en.wikipedia.org/wiki/Role-based_access_control (accessed
February 10, 2020)
iii“Attribute-based access control,” https://en.wikipedia.org/wiki/Attribute-based_access_control
(accessed February 10, 2020)
iv The examples in this section are meant to illustrate optimizing for set math capability within a
context where both the identity provider (or user attribute store) and the service provider (or
resource to be protected) exist within a common environment, and does not extend to federated
contexts where a service provider may be interacting with one or more externally controlled
identity providers. It is, however, worth noting that PBAC (/ABAC/CBAC) can easily accommodate
these externalities.
v “Euler diagram,” https://en.wikipedia.org/wiki/Euler_diagram, (accessed February 25, 2020)

 15

vi“eXtensible Access Control Markup Language (XACML) Version 3.0 Plus Errata 01,”
https://docs.oasis-open.org/xacml/3.0/errata01/os/xacml-3.0-core-spec-errata01-os-
complete.pdf (accessed May 20, 2022)

