
Token Lifetimes and Security in
OAuth 2.0: Best Practices and
Emerging Trends
By Heather Flanagan (Spherical Cow Consulting)
© 2024 IDPro, Heather Flanagan

To comment on this article, please visit our GitHub repository and submit an issue.

Table of Contents

ABSTRACT .. 2

INTRODUCTION .. 2

TERMINOLOGY ..4

DEFINING “SHORT” VERSUS “LONG” ... 5

THE ROLE OF SHORT-LIVED TOKENS IN SECURITY ... 6

REDUCED ATTACK SURFACE..6
Enhanced Security Through Short-Lived Token Rotation ... 7
Security of Refresh Tokens ... 7
Summarizing the Security Implications ... 8

SUPPORT FOR SCALABLE AND STATELESS ARCHITECTURES ...8

SECURITY RISKS OF LONG-LIVED TOKENS .. 9

LONG-LIVED TOKENS..9
TOKEN REPLAY VULNERABILITIES .. 10
CHALLENGES WITH REVOCATION .. 10
INCREASED ATTACK SURFACE .. 10
DIFFICULTY IN ENFORCING LEAST PRIVILEGE .. 11

WHEN LONG-LIVED TOKENS MAY MAKE SENSE ... 12

REDUCED OVERHEAD IN TOKEN RENEWAL .. 12
IMPROVED PERFORMANCE IN STATELESS SYSTEMS .. 12
SERVICE-TO-SERVICE COMMUNICATION.. 12

EMERGING TRENDS AND FUTURE DIRECTIONS ... 13

CONTINUOUS ACCESS EVALUATION PROFILE (CAEP) ... 13
RISK-BASED TOKEN LIFETIMES .. 13
PROOF OF POSSESSION AND SENDER-CONSTRAINED TOKENS .. 13
ENHANCED REVOCATION MECHANISMS .. 14

CONCLUSION ... 14

https://github.com/IDPros/bok
https://docs.github.com/en/github/managing-your-work-on-github/opening-an-issue-from-code

AUTHOR BIO ... 15

Abstract

In networked and federated systems using OAuth 2.0 and OpenID Connect, tokens
are essential for securely communicating between human and non-human entities
without requiring the constant revalidation in every request. The improper
management of these tokens, however, can expose systems to serious threats, such
as token replay attacks.

While the most secure practices involve real-time risk-based token revocation and
sender-constrained tokens, organizations may not be ready for that, given the
maturity of their security infrastructure. Developers and architects should consider
the security benefits of using short-lived, narrowly scoped client-bound tokens
designed to minimize the risk of misuse. By limiting the lifespan of tokens or binding
them to specific clients (as in sender-constrained tokens), organizations can
significantly reduce the attack surface and thwart token replay attempts. Identity
practitioners must be aware of the limitations of long-lived tokens as well as the best
practices for securing token-based systems.

Introduction
Identity systems and the use of tokens go hand in hand; their existence is
ubiquitous, and the need to manage them carefully is at the core of identity security
practice today. But what is a token?

A token is a digital object that can represent a set of claims or attributes about an
entity, such as a user, device, or process, typically used in authentication and
authorization protocols.i Tokens are often cryptographically signed and/or encrypted
to ensure their integrity and confidentiality, preventing tampering and unauthorized
access. Tokens are commonly employed in various identity and access management
systems, enabling a secure mechanism for proving identity, delegating access, or
asserting permissions across networked systems.

Tokens may be differentiated based on whether they require the server to maintain
session information. A token may be stateless and only carry encoded information
(e.g., claims, user roles, and expiration times) within the token itself, such as JSON
Web Tokens (JWTs). This enables a more scalable architecture by reducing demand
on the server. Alternatively, a token may be stateful, at which point the contents are
always opaque to the client and do not inherently “contain” information. (A stateless

token can be opaque as well, if encrypted.) Instead, their meaning is tracked by the
issuing server, which maintains the state (e.g., session data, user permissions)
associated with the token.

Tokens are also described by how they are used. Tokens can be classified as bearer
tokens, which are usable by anyone in possession of them, or client-bound tokens
(sometimes called sender-constrained tokens (e.g., Demonstrating Proof of
Possession (DPoP)),ii), which are bearer tokens cryptographically tied to a specific
client. In the OAuth 2.0 Framework, both client-bound tokens and bearer tokens can
be used for authorization. Tokens may also be short-lived (expiring within a few
minutes or hours) to minimize the risk of misuse or long-lived (remaining valid for
extended periods), with the former offering stronger protection against token replay
attacks. However, while the OAuth 2.0 framework allows these options,
implementation decisions have a meaningful impact on security – which is why
various Working Groups have emerged to develop profiles of OAuth 2.0 that are
appropriate for use cases requiring heightened security.iii

One of the most effective strategies when issuing tokens is to narrowly scope their
permissions. A narrowly scoped token is designed to grant access to only a specific
resource or a limited set of actions rather than offering broad, unrestricted access.
Narrowly scoped tokens limit access to specific resources or actions, reducing the
risk of unauthorized access if a token is compromised. This limitation contrasts with
broader scopes, which can provide access to multiple services or actions with a
single token. Using narrowly scoped tokens, combined with short expiration times,
ensures that even if a token is compromised, the damage is limited to a small
portion of the system, reducing the risk of unauthorized access to critical resources.

The term ‘credential’ is often used interchangeably with ‘token’; unfortunately, that’s
technically incorrect. While tokens and credentials are often related, they serve
distinct roles. Credentials are used to authenticate the identity of a user or system,
while tokens in OAuth 2.0 are issued after authentication to authorize specific
actions. Before the broad adoption of token-based protocols, you may recall that
websites would simply ask for (and store) your credentials: they would log in on your
behalf and access any data they deemed necessary. This is called ‘screen-scraping.’
By limiting the scope, context, and duration of the tokens they grant, authorization
servers protect users (and their credentials) from unscrupulous actors on the
internet.

While tokens provide a convenient and flexible way to authorize users, they can also
introduce significant security risks if not properly managed. Ideally, organizations are
implementing real-time risk-based token revocation.iv However, considering the
correct lifetime for a given token is necessary for organizations that do not have
integrated security management tools.

This brings us to this article and the complicated family of tokens in the OAuth 2.0
framework. OAuth 2.0 is a set of specifications, defined in the Internet Engineering
Task Force (IETF) that allow a client to request a set of scoped tokens to enable
access to resources such as APIs. Understanding the different types and uses of
tokens will help developers and identity and access management professionals
understand the implementation considerations they need to consider in their
environments.

Figure 1: "The OAuth process, at a high level" – reproduced with permission from OAuth 2 in Actionv by
Justin Richer and Antonio Sanso.

Terminology
• Token: A digital object that can represent a set of claims or attributes

about an entity, such as a user, device, or process, typically used in
authorization protocols

• Credential: Credentials are used to authenticate the identity of a user or
system, while OAuth 2.0 tokens are issued after authentication to
authorize specific actions.

• Bearer Token: According to RFC 6750, “The OAuth 2.0 Authorization
Framework: Bearer Token Usage,” a bearer token is a security token
with the property that any party in possession of the token (a "bearer")
can use the token in any way that any other party in possession of it
can.vi

• Client-bound Token: Tokens that are tied to a specific client or device,
ensuring that only the client to which the token was issued can use it.
This is not a formally defined term in the specifications, but you can
learn more in RFC 8705, “OAuth 2.0 Mutual-TLS Client Authentication
and Certificate-Bound Access Tokens”,vii and RFC 9449, “OAuth 2.0
Demonstrating Proof of Possession (DPoP)”.

• Refresh Token: According to RFC 6749, “The OAuth 2.0 Authorization
Framework,” a refresh token is a credential used to obtain access
tokens without requiring the resource owner to reauthenticate.viii

• Sender-constrained Token: Tokens that require the sender to prove that
they are the authorized holder of the token when making a request.

• Token replay attack: A cybersecurity attack that occurs when an
attacker intercepts valid tokens—such as tokens or session IDs—during
transmission and reuses them to impersonate the legitimate user or
system.

Defining “Short” versus “Long”
In OAuth 2.0, two types of tokens are issued during the authorization process. The
access token tends to be short-lived and is scoped for the resources where it will be
used. The refresh token tends to be longer-lived and is only used with the
authorization server to obtain new short-lived access tokens. Access tokens are
typically created during the authorization process after the user successfully
authenticates. In contrast, refresh tokens are issued alongside access tokens and
allow new short-lived access tokens to be generated without requiring the user to
reauthenticate. Access tokens are meant for authorizing specific API calls, while
refresh tokens are used only with the authorization server to obtain new access
tokens. This mechanism ensures that users don’t need to log in again for
subsequent access, but periodic reauthentication might still be necessary,
depending on the security requirements.

How you define “short” versus “long” token lifespans will vary depending on the
sensitivity of your use case. For example, NIST SP 800-63B specifies that for
Authenticator Assurance Level (AAL) 1, “reauthentication of the subscriber SHOULD
be repeated at least once per 30 days during an extended usage session, regardless
of user activity.” This guideline suggests that even with mechanisms like refresh

tokens, reauthentication should occur periodically to maintain the security of the
session.”ix

The Role of Short-Lived Tokens in Security

Short-lived tokens are a fundamental tool in enhancing the security of modern
authentication and authorization systems. These tokens are designed to expire after
a brief period—usually minutes or hours—thereby minimizing the window of
opportunity for attackers to exploit them if they are intercepted or compromised. By
limiting their lifespan, short-lived tokens reduce the risk of token misuse and
improve the overall security posture of a system. Short-lived tokens significantly
mitigate risks associated with token replay attacks and unauthorized use, but they
must be part of a broader security strategy, including token binding and revocation
mechanisms.

Although this article focuses on short-lived tokens as a security best practice,
emerging standards like Continuous Access Evaluation Profile (CAEP) aim to extend
token lifetimes in controlled ways, reflecting a shift toward risk-based token
management. x

The use of short-lived tokens is recommended in numerous security standards and
guidelines. For instance, NIST SP 800-63C emphasizes the importance of using
short-lived, narrowly-scoped tokens for federated identity systems to minimize
risks.xi Similarly, BCP 225 outlines best practices for JSON Web Tokens (JWTs),
including the recommendation to limit the lifetime of tokens to reduce their
exposure to attacks.

The standards also encourage the combination of short-lived tokens with other
security mechanisms, such as client-bound tokens or token binding, which ensures
that tokens can only be used by specific clients, further enhancing their security, or
sender-constrained tokens, which require the sender to prove that they are the
authorized holder of the token when making a request.

Reduced Attack Surface

One of the big benefits of short-lived tokens is the reduction of the attack window
(i.e., the length of time that an attacker could exploit endpoints). In traditional token-
based systems, tokens with long expiration times are particularly vulnerable to token
replay attacks, where an attacker captures a token and reuses it to impersonate the
legitimate user. Short-lived tokens mitigate this threat by limiting the time in which

a token can be used. Even if an attacker manages to steal a token, its utility is
severely restricted because it will soon expire, rendering it invalid.

For example, in the context of OAuth 2.0, access tokens should be issued with a short
lifespan, after which the client must request a new token using a refresh token.xii This
approach ensures that even if an attacker intercepts an access token, they cannot
use it for long.

Enhanced Security Through Short-Lived Token Rotation

Short-lived tokens play a crucial role in reducing the impact of token compromise by
enforcing frequent token rotation. With short expiration times—typically ranging
from minutes to hours—these tokens minimize the window of opportunity for
attackers. If a short-lived access token is intercepted, its limited lifespan means that
it will soon become invalid, rendering it useless to the attacker. This frequent
renewal of access tokens forces attackers to be more persistent and repeatedly
intercept new tokens, which increases the likelihood of detecting suspicious activity.

In contrast, long-lived tokens remain valid for extended periods, such as days or even
months. If compromised, they provide attackers with prolonged access to protected
resources, increasing the risk of unauthorized activity. By reducing token lifespan,
organizations can significantly limit the potential damage of compromised tokens,
ensuring that access is tied to a shorter, more controlled time frame.

However, it is important to consider the role of refresh tokens, which are used to
obtain new access tokens without requiring the user to reauthenticate. While
refresh tokens often have longer lifespans, they must be protected with robust
security measures. If an attacker gains access to a refresh token, they can continue
to generate new short-lived access tokens, potentially maintaining unauthorized
access over time. There must be additional protections to prevent or mitigate
refresh token replay, such as refresh token rotation upon every use, client binding,
real-time risk-based token revocation, and secure storage of refresh tokens.
Together, these protections prevent misuse and ensure that short-lived token
strategies remain effective.

Security of Refresh Tokens

While access tokens are short-lived and may be in API requests or during
authentication flows, refresh tokens are stored securely on the client. This safe
storage is critical because refresh tokens are valuable; if they are compromised, the
attacker can maintain access far beyond the expiration of the original access token.

Systems that use refresh tokens should implement several security measures to
mitigate the risk:

1. Refresh Token Rotation: Upon each use, the refresh token should be reissued
to limit the threat of any one token being captured.

2. Client Binding: Refresh tokens should be cryptographically bound to a specific
client or device. This secure binding means that even if an attacker steals both
the access token and the refresh token, they cannot use the refresh token
from a different device or application. The refresh token will only work on the
client it was originally issued to.

3. Reauthentication: Some systems require users to periodically reauthenticate
before issuing new refresh tokens. This action adds a layer of security by
forcing legitimate users to prove their identity again, limiting the window
during which a stolen refresh token can be used.

4. Token Revocation: If suspicious activity is detected—such as refresh tokens
being used from an unfamiliar device or location—the system can revoke both
the refresh and access tokens. This revocation forces a reauthentication and
cuts off any further unauthorized access.

Summarizing the Security Implications

● If only the access token is compromised and not client-bound, the impact is
limited to the token’s short lifespan. The attacker can use the token for a
limited time, after which it becomes useless.

● If both the access token and the refresh token are compromised, the attacker
can maintain long-term access by continuously refreshing the access token.
In this case, additional security measures such as client binding,
reauthentication, or token revocation become crucial for mitigating the
damage.

Support for Scalable and Stateless Architectures

Short-lived tokens are particularly well-suited for stateless architectures, such as
RESTful APIs, because they reduce the need to maintain the server’s session state.
When a token is short-lived, the server may not need to track session data over an
extended period, which simplifies the architecture and reduces the potential attack
vectors related to session management.

In microservices architectures, where services communicate frequently over APIs,
short-lived tokens play a critical role in authenticating and authorizing requests
between services. Their limited lifespan ensures that, even if an attacker manages to
access a token from one microservice, the time available for them to use it is

minimal. The scope of the token is also critical to its security impact. A token
representing only the client’s identity can expose a broader range of resources.
However, if the token carries user-specific information with a narrowly defined
scope, the potential attack surface is significantly reduced.

Another option for microservices, currently under discussion within the IETF, is the
use of transaction tokens.xiii These tokens allow workloads in a trusted domain to
maintain the user identity and authorization details of an external request, such as
an API call, across all workloads involved in processing that request.

Security Risks of Long-Lived Tokens

While short-lived tokens are not inherently more secure in stateless architectures,
their design aligns with the scalability and efficiency needs of modern systems,
reducing the attack surface by limiting token lifespans. The persistence and
vulnerability of tokens can open doors for various attack vectors, particularly token
compromise and replay. Let’s look at a few critical security drawbacks associated
with tokens whose lifetimes are long enough to be more easily used by an attacker.

Long-Lived Tokens
Common types of long-lived tokens, such as API keys and session tokens used in
mobile apps, often remain valid for extended periods—sometimes days, weeks, or
even indefinitely. API keys are often used for backend services that need to
authenticate to external services, while session tokens maintain user sessions across
mobile app interactions. More to the point, API keys are used to authenticate
programmatic requests, while session tokens help maintain user sessions across
multiple interactions. These tokens reduce the burden on users or applications to re-
authenticate or refresh their credentials frequently, offering convenience and
stability.

However, this also creates a significant security risk. If these long-lived tokens are
compromised, attackers can use them to gain persistent unauthorized access to
systems or resources without being detected for an extended period.
In environments where tokens are not frequently reissued or refreshed, the chances
of interception or theft increase. This possibility makes long-lived tokens particularly
attractive targets for attackers, as they allow for sustained access once
compromised. Without mechanisms like token revocation or detection of replayed
tokens, such breaches can go unnoticed, giving attackers ample time to explore and
exploit vulnerabilities within the system.

Token Replay Vulnerabilities

One of the most concerning security drawbacks of some tokens is their susceptibility
to token replay attacks. In a token replay attack, an attacker intercepts a token
(through manipulator-in-the-middle attacks, session hijacking, or other methods)
and reuses it to impersonate a legitimate user.xiv Tokens that are not tied to a specific
client or have long expiration times are easy targets for replay attacks.

For example, in a system using long-lived tokens, an attacker who successfully
intercepts an access token could reuse it repeatedly until it expires, giving them
ongoing access to sensitive resources. Without mechanisms like token binding or
short expiration times, little can prevent these replay attacks from succeeding.
According to NIST SP 800-63C, tokens not bound to a specific client or have
inadequate expiration times are a critical weakness in federated identity systems.

Challenges with Revocation

Revocation is another significant weakness of traditional long-lived tokens. Once
issued, long-lived tokens, session cookies, or API keys are often difficult to revoke in
real time. If a token is compromised, administrators must manually revoke it or wait
for it to expire, creating a time window in which an attacker can continue to exploit
the token.

Many systems that rely on older OAuth token specifications do not have effective
mechanisms for real-time token revocation or monitoring of credential usage, which
can lead to prolonged security incidents. While traditional long-lived tokens pose
revocation challenges, frameworks like CAEP are redefining how tokens can be
managed dynamically, enabling longer lifespans under strict monitoring and policy
enforcement. Organizations that are taking advantage of CAEP may extend token
lifetimes, requiring a refresh only after an event that triggers policy enforcement.

Increased Attack Surface
Long-lived tokens can increase the attack window for an organization, especially
when they are not tightly scoped or frequently refreshed. Because these tokens
remain valid for extended periods and may be used across multiple devices or
services, a compromised long-lived token can give attackers more time to explore
and exploit vulnerabilities within a network. This is particularly true when the token
allows access to multiple services or resources without requiring frequent
revalidation.

However, refresh tokens are typically not issued in most server-to-server interactions,
and short-lived access tokens are preferred to minimize the time a token remains
valid. This restriction limits the window of opportunity for attackers to misuse a
compromised token. In contrast, long-lived tokens, like those used in user sessions
or in environments where periodic reauthentication is not enforced, could be reused
by an attacker until they are revoked or expire naturally.

For instance, if an attacker gains access to a compromised long-lived token, they can
use it to maintain access to specific services or potentially move laterally within a
network to escalate privileges. While the token itself does not directly extend its own
lifespan (unlike a refresh token), the extended time during which it remains valid
provides the attacker with more opportunities to exploit the network before
detection.

In microservices environments, where APIs are constantly communicating, short-
lived tokens are crucial for securing service-to-service interactions. These tokens
ensure that access is limited in time and scope, making it harder for attackers to
leverage a compromised token to pivot to other services. However, each location
where tokens are stored or transmitted in such environments represents a potential
attack vector, emphasizing the need for secure storage and transmission practices.

Difficulty in Enforcing Least Privilege
While long-lived tokens can be scoped to enforce least privilege, their existence
represents standing privilege;xv they still pose a higher risk if not carefully managed,
as compromised tokens can grant attackers prolonged access to specific
resources.xvi If the scope is too broad at the time of issuance, long-lived tokens might
unintentionally provide access to resources beyond what is necessary.

In contrast, short-lived, narrowly scoped tokens allow administrators to enforce fine-
grained access control, ensuring that tokens are only valid for specific operations or
resources for a limited time. By applying narrow scopes, organizations can reduce
the potential damage from a compromised token, as an attacker would only gain
access to a limited subset of resources. This approach restricts unauthorized access
to a small part of the infrastructure, making it an essential control for protecting
sensitive systems.

When Long-Lived Tokens May Make Sense
There are scenarios where long-lived tokens do offer certain benefits, particularly in
specific use cases where organizations have good reason to prioritize convenience
and reduced token management overhead. For example:

Reduced Overhead in Token Renewal

Long-lived tokens minimize the need for frequent token refreshes, reducing the
number of calls to the authentication server. This limitation is particularly useful in
applications where users or services need continuous access over extended periods
without interruptions.

● Use case: In systems where uptime and uninterrupted access are critical
(such as in background services, batch processing, or long-running data
analytics jobs), long-lived tokens can prevent delays or failures caused by
expired tokens.

● Note: In cases where the application involves workload identities, then
protocols like SPIFFE enable dynamic, instance-based tokens.xvii Long-lived
tokens are not necessary.

Improved Performance in Stateless Systems

In stateless architectures, such as RESTful APIs, where the session state is not
maintained on the server side, long-lived tokens eliminate the need to constantly
issue new tokens. This option can enhance the system’s overall performance by
reducing the load on authentication and authorization servers.

• Use case: For applications requiring minimal server-side interaction for
performance reasons, such as APIs serving high requests, long-lived tokens
can reduce the number of database or server interactions needed to reissue
tokens.

Service-to-Service Communication

In certain system-to-system communications where services need to interact with
each other in a highly trusted environment (e.g., within the same enterprise or data
center), long-lived tokens can reduce the need for frequent authentication and
authorization exchanges. This makes service communication more efficient.

https://learn.microsoft.com/en-us/entra/workload-id/workload-identities-overview
https://spiffe.io/docs/latest/spiffe-about/overview/

● Use case: Within microservice architectures in secure internal networks, long-
lived tokens can facilitate inter-service communication without requiring
frequent re-authentication.

● Note: This use can also be solved by using short-lived tokens that leverage
client_secret_jwt or private_key_jwt as defined in the OpenID Connect Core
specification.xviii

Emerging Trends and Future Directions
The field of token management is evolving rapidly as organizations seek to balance
security, scalability, and usability. While this article focuses on the current best
practices for short-lived tokens, ongoing advancements in standards and
frameworks are introducing new approaches to token lifetimes and security.

Continuous Access Evaluation Profile (CAEP)
One of the most significant emerging developments is the Continuous Access
Evaluation Profile (CAEP), a framework designed to dynamically assess and adjust
access permissions in real time. CAEP enables access tokens to have longer lifespans
without compromising security. This is achieved by combining periodic risk
assessments with real-time revocation capabilities. For example, if a security event,
such as a user’s location change or device compromise, is detected, access can be
revoked immediately, even if the token has not yet expired. While still in draft form,
CAEP is gaining traction among vendors as a promising solution for risk-based token
management.

Risk-Based Token Lifetimes
Traditional token lifetimes often rely on static durations, but future implementations
are likely to adopt adaptive token lifetimes based on real-time risk analysis. By
evaluating factors such as user behavior, device trust levels, and contextual signals,
organizations could dynamically adjust token expiration times. This approach seeks
to reduce unnecessary reauthentication while maintaining a high level of security.

Proof of Possession and Sender-Constrained Tokens
The shift from bearer tokens to proof-of-possession (PoP) or sender-constrained
tokens, mentioned earlier in the Introduction, represents another critical trend.
These tokens require the client to demonstrate cryptographic proof that they are the
legitimate holder of the token. Standards such as OAuth 2.0 DPoP (Demonstration

of Proof-of-Possession) and Mutual TLS (mTLS) are advancing this concept, reducing
the risk of token replay attacks and unauthorized use.

Enhanced Revocation Mechanisms
Real-time token revocation remains a challenge, especially in distributed systems.
One draft under discussion is draft-parecki-oauth-global-token-revocation,
“Global Token Revocation”.xix At the time of publication of this article, the draft has
not been accepted by an IETF working group, but it remains an interesting example
of ongoing work in the revocation space.

Conclusion
While long-lived tokens can offer convenience, particularly in trusted environments,
the risks they present—such as token replay, session hijacking, and unauthorized
access—must be carefully managed. (Of course, if you are following zero-trust
principles, there is no such thing as a trusted environment.) Short-lived, narrowly-
scoped tokens, client-bound tokens, and strong cryptographic standards provide an
effective framework for mitigating these risks. Several guides are available on best
practices in different environments, including BCP 225, “JSON Web Token Best
Current Practices”; review them and consider how they can apply to your
environment.

Frameworks like OAuth 2.0 and emerging standards like WIMSE (Workload Identity
in Multi-System Environments) are beginning to provide the necessary
infrastructure for managing short-lived tokens, particularly in cloud-native and
microservices architectures.xx WIMSE is an interesting standardization effort for
applications and multi-cloud identities. And while short-lived tokens remain a
cornerstone of secure token management today, the evolving landscape of token
management frameworks, such as CAEP, suggests that risk tolerance for longer
token lifetimes may shift as standards and implementations mature.

Your organization’s risk posture will guide your definition of “short” and “long.”
Regardless of whether you consider seconds, minutes, or months “short,” you need
to implement strict scoping, use token binding, and ensure robust revocation and
monitoring processes. You are aiming for a balance between security, usability, and
performance, ensuring that both user and service interactions are protected against
emerging threats.

Author Bio

Heather Flanagan, Principal at Spherical Cow Consulting, comes from a
position that the Internet is led by people, powered by words, and inspired by
technology. She has been involved in leadership roles with some of the most
technical, volunteer-driven organizations on the Internet, including IDPro as
Executive Director and Principal Editor; the OpenID Foundation as Lead Editor; the
IETF, IAB, and the IRTF as RFC Series Editor; ICANN as Technical Writer and Editor;
and REFEDS as Coordinator, just to name a few. If there is work going on to develop
new Internet standards, or discussions around the future of digital identity, she is
interested in engaging in that work. You can learn more about her at
<https://www.linkedin.com/in/hlflanagan/>

i Y., Hardt, D., and M. Jones, "JSON Web Token Best Current Practices", BCP 225, RFC 8725,
DOI 10.17487/RFC8725, February 2020, <https://www.rfc-editor.org/info/rfc8725>. Note that
some readers may find reference to RFC 8471, “The Token Binding Protocol” in their search
for more information on token binding. That specification has been largely abandoned. See
https://groups.google.com/a/chromium.org/g/blink-dev/c/OkdLUyYmY1E/m/w2ESAeshBgAJ
for the thread that ultimately ended widescale adoption of the Token Binding Protocol.
ii Fett, D., Campbell, B., Bradley, J., Lodderstedt, T., Jones, M., and D. Waite, "OAuth 2.0
Demonstrating Proof of Possession (DPoP)", RFC 9449, DOI 10.17487/RFC9449, September
2023, <https://www.rfc-editor.org/info/rfc9449>.
iii For examples of how specific use cases are handled, see the profile of OAuth 2.0 and
OpenID Connect recommended by the OpenID Foundation’s FAPI Working Group that
focuses on use cases requiring high security, like Open Banking: Fett, D. “FAPI 2.0 Security
Profile” Implementers Draft, December, 2022, https://openid.net/specs/fapi-2_0-security-
profile-ID2.html
iv There is work underway in the IETF to standardized real-time token revocation, but the
work is still in draft form. See Parecki, A., “Global Token Revocation,” draft-parecki-oauth-
global-token-revocation, https://datatracker.ietf.org/doc/draft-parecki-oauth-global-token-
revocation/.
v Richer, Justin, and Antonio Sanso. 2017. OAuth 2 in Action. Manning.
vi Jones, M. and D. Hardt, "The OAuth 2.0 Authorization Framework: Bearer Token Usage", RFC
6750, DOI 10.17487/RFC6750, October 2012, <https://www.rfc-editor.org/info/rfc6750>.
vii Campbell, B., Bradley, J., Sakimura, N., and T. Lodderstedt, "OAuth 2.0 Mutual-TLS Client
Authentication and Certificate-Bound Access Tokens", RFC 8705, DOI 10.17487/RFC8705,
February 2020, <https://www.rfc-editor.org/info/rfc8705>.
viii Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", RFC 6749, DOI 10.17487/RFC6749,
October 2012, <https://www.rfc-editor.org/info/rfc6749>.

https://www.linkedin.com/in/hlflanagan/
https://www.rfc-editor.org/info/rfc8725
https://groups.google.com/a/chromium.org/g/blink-dev/c/OkdLUyYmY1E/m/w2ESAeshBgAJ
https://groups.google.com/a/chromium.org/g/blink-dev/c/OkdLUyYmY1E/m/w2ESAeshBgAJ
https://groups.google.com/a/chromium.org/g/blink-dev/c/OkdLUyYmY1E/m/w2ESAeshBgAJ
https://www.rfc-editor.org/info/rfc9449
https://datatracker.ietf.org/doc/draft-parecki-oauth-global-token-revocation/
https://datatracker.ietf.org/doc/draft-parecki-oauth-global-token-revocation/
https://datatracker.ietf.org/doc/draft-parecki-oauth-global-token-revocation/
https://www.rfc-editor.org/info/rfc6749

ix Grassi, Paul A, James L Fenton, Elaine M Newton, Ray A Perlner, Andrew R Regenscheid,
William E Burr, Justin P Richer, et al. 2017. “Digital Identity Guidelines: Authentication and
Lifecycle Management.” https://doi.org/10.6028/nist.sp.800-63b.
x Cappalli, T. and Tulshibagwale, A. “OpenID Continuous Access Evaluation Profile 1.0 – Draft
03” 2024-06-19, https://openid.net/specs/openid-caep-1_0-ID2.html
xi Grassi, Paul A, Justin P Richer, Sarah K Squire, James L Fenton, Ellen M Nadeau, Naomi B
Lefkovitz, Jamie M Danker, Yee-Yin Choong, Kristen K Greene, and Mary F Theofanos. 2017.
“Digital Identity Guidelines: Federation and Assertions.” https://doi.org/10.6028/nist.sp.800-
63c.
xii RFC 6749, "The OAuth 2.0 Authorization Framework”.
xiii Fletcher, George, Pieter Kasselman, Atul Tulshibagwale, “Transaction Tokens,” last
updated 2024-07-03, https://datatracker.ietf.org/doc/draft-ietf-oauth-transaction-
tokens/.
xiv “Manipulator-in-the-middle Attack | OWASP Foundation,” n.d. https://owasp.org/www-
community/attacks/Manipulator-in-the-middle_attack.
xv Trevino, Aranza, and Aranza Trevino. 2024. “What Are Zero Standing Privileges?” Keeper
Security Blog - Cybersecurity News & Product Updates. April 29, 2024.
https://www.keepersecurity.com/blog/2024/04/29/what-are-zero-standing-privileges/.
xvi Carter, M. K., (2022) “Techniques To Approach Least Privilege”, IDPro Body of Knowledge
1(9). doi: https://doi.org/10.55621/idpro.88
xvii “SPIFFE – Secure Production Identity Framework for Everyone,” n.d. https://spiffe.io/.
xviii Sakimura, Nat, John Bradley, Michael Jones, Breno De Medeiros, and Chuck
Mortimore. 2023. “OpenID Connect Core 1.0 incorporating errata set 2.” OpenID
Foundation. https://openid.net/specs/openid-connect-core-1_0.html.
xix Parecki, A. “Global Token Revocation,” draft-parecki-oauth-global-token-revocation,
https://datatracker.ietf.org/doc/draft-parecki-oauth-global-token-revocation/.
xx “Workload Identity in Multi System Environments (Wimse).” n.d.
https://datatracker.ietf.org/group/wimse/about/.

https://doi.org/10.6028/nist.sp.800-63b
https://doi.org/10.6028/nist.sp.800-63c
https://doi.org/10.6028/nist.sp.800-63c
https://doi.org/10.6028/nist.sp.800-63c
https://datatracker.ietf.org/doc/draft-ietf-oauth-transaction-tokens/
https://datatracker.ietf.org/doc/draft-ietf-oauth-transaction-tokens/
https://www.keepersecurity.com/blog/2024/04/29/what-are-zero-standing-privileges/
https://doi.org/10.55621/idpro.88
https://doi.org/10.55621/idpro.88
https://openid.net/specs/openid-connect-core-1_0.html
https://datatracker.ietf.org/group/wimse/about/

	Abstract
	Introduction
	Terminology

	Defining “Short” versus “Long”
	The Role of Short-Lived Tokens in Security
	Reduced Attack Surface
	Enhanced Security Through Short-Lived Token Rotation
	Security of Refresh Tokens
	Summarizing the Security Implications

	Support for Scalable and Stateless Architectures

	Security Risks of Long-Lived Tokens
	Long-Lived Tokens
	Token Replay Vulnerabilities
	Challenges with Revocation
	Increased Attack Surface
	Difficulty in Enforcing Least Privilege

	When Long-Lived Tokens May Make Sense
	Reduced Overhead in Token Renewal
	Improved Performance in Stateless Systems
	Service-to-Service Communication

	Emerging Trends and Future Directions
	Continuous Access Evaluation Profile (CAEP)
	Risk-Based Token Lifetimes
	Proof of Possession and Sender-Constrained Tokens
	Enhanced Revocation Mechanisms

	Conclusion
	Author Bio

